Catalog: Info Courses

Lower-Division

Foundations of data science from three perspectives: inferential thinking, computational thinking, and real-world relevance. Given data arising from some real-world phenomenon, how does one analyze that data so as to understand that phenomenon? The course teaches critical concepts and skills in computer programming and statistical inference, in conjunction with hands-on analysis of real-world datasets, including economic data, document collections, geographical data, and social networks. It delves into social and legal issues surrounding data analysis, including issues of privacy and data ownership. Also listed as Computer Science C8 and Statistics C8.

Course may be repeated for credit. One to four hours of directed group study per week. Must be taken on a passed/not passed basis. Lectures and small group discussions focusing on topics of interest, varying from semester to semester.

Upper-Division

This class introduces key issues, concepts, and methodologies of information studies. Students consider questions such as: what does it mean to live in an information society? What are the human and social aspects of the design of technology? How do policy, law, and other social forces affect this? How can technology and data be designed for social good? Students will become familiar with the kinds of research and multidisciplinary methods used in information studies. Students leave the course with tools to understand the politics, economics, and culture of information systems; a nuanced understanding of contemporary case studies involving technological systems in society; and a solid foundation for further study in information science.

Surveying history through the lens of information and information through the lens of history, this course looks across time to consider what might distinguish ours as “the information age” and what that description implies about the role of “information technology” across time. We will select moments in societies’ development of information production, circulation, consumption, and storage from the earliest writing and numbering systems to the world of Social Media. In every instance, we’ll be concerned with what and when, but also with how and why. Throughout we will keep returning to questions about how information-technological developments affect society and vice versa?

Three hours of lecture per week. Methods and concepts of creating design requirements and evaluating prototypes and existing systems. Emphasis on computer-based systems, including mobile system and ubiquitous computing, but may be suitable for students interested in other domains of design for end-users. Includes quantitative and qualitative methods as applied to design, usually for short-term term studies intended to provide guidance for designers. Students will receive no credit for 114 after taking 214.

This course applies economic tools and principles, including game theory, industrial organization, information economics, and behavioral economics, to analyze business strategies and public policy issues surrounding information technologies and IT industries. Topics include: economics of information goods, services, and platforms; economics of information and asymmetric information; economics of artificial intelligence, cybersecurity, data privacy, and peer production; strategic pricing; strategic complements and substitutes; competition and antitrust; Internet industry structure and regulation; network cascades, network formation, and network structure.

This course is a survey of technologies that power the user interfaces of web applications on a variety of devices today, including desktop, mobile, and tablet devices. This course will delve into some of the core front-end languages and frameworks (HTML/CSS/JavaScript/React/Redux), as well as the underlying technologies that enable web applications (HTTP, URI, JSON). The goal of this course is to provide an overview of the technical issues surrounding user interfaces powered by the web today, and to provide a solid and comprehensive perspective of the web’s constantly evolving landscape.

This course is a survey of web technologies that are used to build back-end systems that enable rich web applications. Utilizing technologies such as Python, FastAPI, Docker, RDBMS/NoSQL databases, and Celery/Redis, this class aims to cover the foundational concepts that drive the web today. This class focuses on building APIs using microservices that power everything from content management systems to data engineering pipelines that provide insights by processing large amounts of data. The goal of this course is to provide an overview of the technical issues surrounding back-end systems today and to provide a solid and comprehensive perspective of the web’s constantly evolving landscape.

This course introduces students to natural language processing and exposes them to the variety of methods available for reasoning about text in computational systems. NLP is deeply interdisciplinary, drawing on both linguistics and computer science, and helps drive much contemporary work in text analysis (as used in computational social science, the digital humanities, and computational journalism). We will focus on major algorithms used in NLP for various applications (part-of-speech tagging, parsing, coreference resolution, machine translation) and on the linguistic phenomena those algorithms attempt to model. Students will implement algorithms and create linguistically annotated data on which those algorithms depend.

This course provides an introduction to ethical and legal issues surrounding data and society, as well as hands-on experience with frameworks, processes, and tools for addressing them in practice. It blends social and historical perspectives on data with ethics, law, policy, and case examples — from Facebook’s “Emotional Contagion” experiment to controversies around search engine and social media algorithms, to self-driving cars — to help students develop a workable understanding of current ethical and legal issues in data science and machine learning. Legal, ethical, and policy-related concepts addressed include: research ethics; privacy and surveillance; bias and discrimination; and oversight and accountability. These issues will be addressed throughout the lifecycle of data — from collection to storage to analysis and application. The course emphasizes strategies, processes, and tools for attending to ethical and legal issues in data science work. Course assignments will emphasize researcher and practitioner reflexivity, allowing students to explore their own social and ethical commitments.

Specific topics, hours and credit may vary from section to section, year to year. May be repeated for credit with change in content.
Course may be repeated for credit. One to four hours of lecture per week. Meetings to be arranged. Must be taken on a passed/not passed basis.

Course may be repeated for credit. Must be taken on a pass/not passed basis. Individual study of topics in information management and systems under faculty supervision.

Graduate

Introduces the data sciences landscape, with a particular focus on learning data science techniques to uncover and answer the questions students will encounter in industry. Lectures, readings, discussions, and assignments will teach how to apply disciplined, creative methods to ask better questions, gather data, interpret results, and convey findings to various audiences. The emphasis throughout is on making practical contributions to real decisions that organizations will and should make.

15 weeks; 3 hours of lecture per week. This course introduces the intellectual foundations of information organization and retrieval: conceptual modeling, semantic representation, vocabulary and metadata design, classification, and standardization, as well as information retrieval practices, technology, and applications, including computational processes for analyzing information in both textual and non-textual formats.

This course is designed to be an introduction to the topics and issues associated with information and information technology and its role in society. Throughout the semester we will consider both the consequence and impact of technologies on social groups and on social interaction and how society defines and shapes the technologies that are produced. Students will be exposed to a broad range of applied and practical problems, theoretical issues, as well as methods used in social scientific analysis. The four sections of the course are: 1) theories of technology in society, 2) information technology in workplaces 3) automation vs. humans, and 4) networked sociability.

This course uses examples from various commercial domains — retail, health, credit, entertainment, social media, and biosensing/quantified self — to explore legal and ethical issues including freedom of expression, privacy, research ethics, consumer protection, information and cybersecurity, and copyright. The class emphasizes how existing legal and policy frameworks constrain, inform, and enable the architecture, interfaces, data practices, and consumer facing policies and documentation of such offerings; and, fosters reflection on the ethical impact of information and communication technologies and the role of information professionals in legal and ethical work.

This course introduces the basics of computer programming that are essential for those interested in computer science, data science, and information management. Students will write their own interactive programs (in Python) to analyze data, process text, draw graphics, manipulate images, and simulate physical systems. Problem decomposition, program efficiency, and good programming style are emphasized throughout the course.

The ability to represent, manipulate, and analyze structured data sets is foundational to the modern practice of data science. This course introduces students to the fundamentals of data structures and data analysis (in Python). Best practices for writing code are emphasized throughout the course. This course forms the second half of a sequence that begins with INFO 206A. It may also be taken as a stand-alone course by any student that has sufficient Python experience.

This course will provide an introduction to the field of human-computer interaction (HCI). Students will learn to apply design thinking to user experience (UX) design, prototyping, & evaluation. The course will also cover special topic areas within HCI.

This course addresses concepts and methods of user experience research, from understanding and identifying needs, to evaluating concepts and designs, to assessing the usability of products and solutions. We emphasize methods of collecting and interpreting qualitative data about user activities, working both individually and in teams, and translating them into design decisions. Students gain hands-on practice with observation, interview, survey, focus groups, and expert review. Team activities and group work are required during class and for most assignments. Additional topics include research in enterprise, consulting, and startup organizations, lean/agile techniques, mobile research approaches, and strategies for communicating findings.

This course gives participants hands-on software product design experience based on current industry practice. The course is project-based with an emphasis on iteration, practice, and critique from experienced industry designers. During the course, participants work iteratively on a series of design projects (both solo and in groups) through a full design process, including developing appropriate design deliverables and gathering feedback. We’ll also cover specific topics, including design and prototyping tools, working with and developing design systems, typical phases and deliverables of the design process, and designing in different contexts (e.g., startups vs. larger companies). There will also be guest lectures from industry experts.

This course is a graduate-level introduction to HCI research. Students will learn to conduct original HCI research by reading and discussing research papers while collaborating on a semester-long research project. Each week the class will focus on a theme of HCI research and review foundational and cutting-edge research relevant to that theme. The class will focus on the following areas of HCI research: ubiquitous computing, social computing, critical theory, and human-AI interaction. In addition to these research topics the class will introduce common qualitative and quantitative methodologies in HCI research.

Three hours of lecture per week. Prerequisites: Graduate standing. As it's generally used, "information" is a collection of notions, rather than a single coherent concept. In this course, we'll examine conceptions of information based in information theory, philosophy, social science, economics, and history. Issues include: How compatible are these conceptions; can we talk about "information" in the abstract? What work do these various notions play in discussions of literacy, intellectual property, advertising, and the political process? And where does this leave "information studies" and "the information society"?

This course focuses on the practice of leadership, collaboration, and people management in contemporary, distributed, information and technology-rich organizations. Not just for potential people managers, we start with the premise that a foundation in leadership, management, and collaboration is essential for individuals in all roles, at any stage of their career. To build this foundation we will take a hybrid approach, engaging literature from disciplines such as social psychology, management, and organizational behavior, as well as leveraging case studies and practical exercises. The course will place a special emphasis on understanding and reacting to social dynamics in workplace hierarchies and teams.

This class is intended for graduate students interested in getting an advanced understanding of judgments and decisions made with predictive algorithms. We will first survey the vast literature on the psychology of how people arrive at judgments and make decisions with the help of statistical information, focused mostly on experimental lab evidence from cognitive and social psychology. Then we will study the burgeoning evidence on how people use statistical algorithms in practice, exploring field evidence from a range of settings from criminal justice and healthcare to housing and labor markets. We will pay special attention to psychological principles that impact the effectiveness and fairness of algorithms deployed at scale. The primary aim is to help students understand systematic human errors and explore potential algorithmic solutions.

Discusses application of social psychological theory and research to information technologies and systems; we focus on sociological social psychology, which largely focuses on group processes, networks, and interpersonal relationships. Information technologies considered include software systems used on the internet such as social networks, email, and social games, as well as specific hardware technologies such as mobile devices, computers, wearables, and virtual/augmented reality devices. We examine human communication practices, through the lens of different social psychology theories, including: symbolic interaction, identity theories, social exchange theory, status construction theory, and social networks and social structure theory.

Three hours of lecture per week. This course applies economic tools and principles, including game theory, industrial organization, information economics, and behavioral economics, to analyze business strategies and public policy issues surrounding information technologies and IT industries. Topics include: economics of information goods, services, and platforms; economics of information and asymmetric information; economics of artificial intelligence, cybersecurity, data privacy, and peer production; strategic pricing; strategic complements and substitutes; competition and antitrust; Internet industry structure and regulation; network cascades, network formation, and network structure.

The introduction of technology increasingly delegates responsibility to technical actors, often reducing traditional forms of transparency and challenging traditional methods for accountability. This course explores the interaction between technical design and values including: privacy, accessibility, fairness, and freedom of expression. We will draw on literature from design, science and technology studies, computer science, law, and ethics, as well as primary sources in policy, standards and source code. We will investigate approaches to identifying the value implications of technical designs and use methods and tools for intentionally building in values at the outset.

This course introduces students to experimentation in data science. Particular attention is paid to the formation of causal questions, and the design and analysis of experiments to provide answers to these questions. This topic has increased considerably in importance since 1995, as researchers have learned to think creatively about how to generate data in more scientific ways, and developments in information technology has facilitated the development of better data gathering.

The design and presentation of digital information. Use of graphics, animation, sound, visualization software, and hypermedia in presenting information to the user. Methods of presenting complex information to enhance comprehension and analysis. Incorporation of visualization techniques into human-computer interfaces. Three hours of lecture and one hour of laboratory per week.

Provides a theoretical and practical introduction to modern techniques in applied machine learning. Covers key concepts in supervised and unsupervised machine learning, including the design of machine learning experiments, algorithms for prediction and inference, optimization, and evaluation. Students will learn functional, procedural, and statistical programming techniques for working with real-world data.

This course is a survey of technologies that power the user interfaces of web applications on a variety of devices today, including desktop, mobile, and tablet devices. This course will delve into some of the core front-end languages and frameworks (HTML/CSS/JavaScript/React/Redux), as well as the underlying technologies that enable web applications (HTTP, URI, JSON). The goal of this course is to provide an overview of the technical issues surrounding user interfaces powered by the web today, and to provide a solid and comprehensive perspective of the web’s constantly evolving landscape.

This course is a survey of web technologies that are used to build back-end systems that enable rich web applications. Utilizing technologies such as Python, Flask, Docker, RDBMS/NoSQL databases, and Spark, this class aims to cover the foundational concepts that drive the web today. This class focuses on building APIs using micro-services that power everything from content management systems to data engineering pipelines that provide insights by processing large amounts of data. The goal of this course is to provide an overview of the technical issues surrounding back-end systems today, and to provide a solid and comprehensive perspective of the web’s constantly evolving landscape.

The course overviews a broad number of paradigms of privacy from a technical point of view. The course is designed to assist system engineers and information systems professionals in getting familiar with the subject of privacy engineering and train them in implementing those mechanisms. In addition, the course is designed to coach those professionals to critically think about the strengths and weaknesses of the different privacy paradigms. These skills are important for cybersecurity professionals and enable them to effectively incorporate privacy-awareness in the design phase of their products.

Three hours of lecture per week. Letter grade to fulfill degree requirements. Prerequisites: Proficient programming in Python (programs of at least 200 lines of code), proficient with basic statistics and probabilities. This course examines the state-of-the-art in applied Natural Language Processing (also known as content analysis and language engineering), with an emphasis on how well existing algorithms perform and how they can be used (or not) in applications. Topics include part-of-speech tagging, shallow parsing, text classification, information extraction, incorporation of lexicons and ontologies into text analysis, and question answering. Students will apply and extend existing software tools to text-processing problems.

This course will cover the principles and practices of managing data at scale, with a focus on use cases in data analysis and machine learning. We will cover the entire life cycle of data management and science, ranging from data preparation to exploration, visualization and analysis, to machine learning and collaboration, with a focus on ensuring reliable, scalable operationalization.

This course introduces students to natural language processing and exposes them to the variety of methods available for reasoning about text in computational systems. NLP is deeply interdisciplinary, drawing on both linguistics and computer science, and helps drive much contemporary work in text analysis (as used in computational social science, the digital humanities, and computational journalism). We will focus on major algorithms used in NLP for various applications (part-of-speech tagging, parsing, coreference resolution, machine translation) and on the linguistic phenomena those algorithms attempt to model. Students will implement algorithms and create linguistically annotated data on which those algorithms depend.

Students will receive no credit for C262 after taking 290 section 4. Three hours of lecture and one hour of laboratory per week. This course explores the theory and practice of Tangible User Interfaces, a new approach to Human Computer Interaction that focuses on the physical interaction with computational media. The topics covered in the course include theoretical framework, design examples, enabling technologies, and evaluation of Tangible User Interfaces. Students will design and develop experimental Tangible User Interfaces using physical computing prototyping tools and write a final project report. Also listed as New Media C262.

Three hours of seminar per week. How does the design of new educational technology change the way people learn and think? How do we design systems that reflect our understanding of how we learn? This course explores issues on designing and evaluating technologies that support creativity and learning. The class will cover theories of creativity and learning, implications for design, as well as a survey of new educational technologies such as works in computer supported collaborative learning, digital manipulatives, and immersive learning environments. Also listed as New Media C263.

This course will cover new interface metaphors beyond desktops (e.g., for mobile devices, computationally enhanced environments, tangible user interfaces) but will also cover visual design basics (e.g., color, layout, typography, iconography) so that we have systematic and critical understanding of aesthetically engaging interfaces. Students will get a hands-on learning experience on these topics through course projects, design critiques, and discussion, in addition to lectures and readings. Two hours of lecture per week.

Three hours of lecture per week. Introduction to many different types of quantitative research methods, with an emphasis on linking quantitative statistical techniques to real-world research methods. Introductory and intermediate topics include: defining research problems, theory testing, causal inference, probability and univariate statistics. Research design and methodology topics include: primary/secondary survey data analysis, experimental designs, and coding qualitative data for quantitative analysis. No prerequisites, though an introductory course in statistics is recommended.

Three hours of lecture per week. Theory and practice of naturalistic inquiry. Grounded theory. Ethnographic methods including interviews, focus groups, naturalistic observation. Case studies. Analysis of qualitative data. Issues of validity and generalizability in qualitative research.

Three hours of seminar per week.  This seminar reviews current literature and debates regarding Information and Communication Technologies and Development (ICTD). This is an interdisciplinary and practice-oriented field that draws on insights from economics, sociology, engineering, computer science, management, public health, etc.

As new sources of digital data proliferate in developing economies, there is the exciting possibility that such data could be used to benefit the world’s poor. Through a careful reading of recent research and through hands-on analysis of large-scale datasets, this course introduces students to the opportunities and challenges for data-intensive approaches to international development. Students should be prepared to dissect, discuss, and replicate academic publications from several fields including development economics, machine learning, information science, and computational social science. Students will also conduct original statistical and computational analysis of real-world data.

This course provides students with real-world experience assisting politically vulnerable organizations and persons around the world to develop and implement sound cybersecurity practices. In the classroom, students study basic theories and practices of digital security, intricacies of protecting largely under-resourced organizations, and tools needed to manage risk in complex political, sociological, legal, and ethical contexts. In the clinic, students work in teams supervised by Clinic staff to provide direct cybersecurity assistance to civil society organizations. We emphasize pragmatic, workable solutions that take into account the unique needs of each partner organization.

Course may be repeated for credit as topic varies.  Two to six hours of lecture per week for seven and one-half weeks or one to four hours of lecture per week for 15 weeks.  Prerequisites:  Consent of instructor.  Specific topics hours, and credit may vary from section to section, year to year.

Course may be repeated for credit as topics in management vary. One to four hours of lecture per week; two to seven and one-half hours of lecture per week for seven weeks. Specific topics, hours, and credit may vary from section to section and year to year.

Specific topics, hours, and credit may vary from section to section and year to year.

Course may be repeated for credit as topics in technology vary. One to four hours of lecture per week; two to six hours of lecture per week for seven weeks. Specific topics, hours, and credit may vary from section to section and year to year.

This course provides academic scaffolding for graduate students in the information sciences who are engaged in internships, practicums, or independent research while progressing toward a master’s or doctoral degree. We focus on applying academic principles for generating, managing, storing, communicating, and using information to professional contexts, which may include corporations, government entities, or non-governmental organizations. Course may be repeated for credit without restriction.

An intensive weekly discussion of current and ongoing research by Ph.D. students with a research interest in issues of information (social, legal, technical, theoretical, etc.). Our goal is to focus on critiquing research problems, theories, and methodologies from multiple perspectives so that we can produce high-quality, publishable work in the interdisciplinary area of information research. Circulated material may include dissertation chapters, qualifying papers, article drafts, and/or new project ideas. We want to have critical and productive discussion, but above all else we want to make our work better: more interesting, more accessible, more rigorous, more theoretically grounded, and more like the stuff we enjoy reading.

One hour colloquium per week. Must be taken on a satisfactory/unsatisfactory basis. Prerequisites: Ph.D. standing in the School of Information. Colloquia, discussion, and readings designed to introduce students to the range of interests of the school.

Info 296A. Seminar (2–4 units)

Course may be repeated for credit as topic varies.  Two to four hours of seminar per week. Prerequisites: Consent of instructor. Topics in information management and systems and related fields. Specific topics vary from year to year. May be repeated for credit, with change of content.

Course may be repeated for credit as topic varies. Weekly group meetings. Prerequisites: Consent of instructor. Group projects on special topics in information management and systems.

The final project is designed to integrate the skills and concepts learned during the Information School master's program and helps prepare students to compete in the job market. It provides experience in formulating and carrying out a sustained, coherent, and significant course of work resulting in a tangible work product; in project management, in presenting work in both written and oral form; and, when appropriate, in working in a multidisciplinary team. Projects may take the form of research papers or professionally-oriented applied work.

Course may be repeated for credit as topic varies. Format varies. Prerequisites: Consent of instructor.  Individual study of topics in information management and systems under faculty supervision.

Professional Development

Discussion, reading, preparation, and practical experience under faculty supervision in the teaching of specific topics within information management and systems. Does not count toward a degree.

Course may be repeated for credit. Must be taken on a satisfactory/unsatisfactory basis. Prerequisites: Consent of instructor. Individual study in consultation with the major field adviser, intended to provide an opportunity for qualified students to prepare themselves for the various examinations required of candidates for the Ph.D. degree.