Info 290

Special Topics in Information

1-4 units

Course Description

Specific topics, hours and credit may vary from section to section, year to year. May be repeated for credit with change in content.

Prerequisites

None

Courses Offered

The Advanced Citizen Clinic practicum is for students who have already completed Info 290. Public Interest Cybersecurity: The Citizen Clinic Practicum.

For individuals and organizations involved in political advocacy, cybersecurity threats are an increasingly common reality of operating in the digital world. Civil society has always been under attack from ideological, political, and governmental opponents who seek to silence dissenting opinions, but the widespread adoption of connected technologies by the individuals and organizations that make up civil society creates a new class of vulnerabilities. Citizen Clinic at the Center for Long-Term Cybersecurity provides students with real-world experience assisting politically vulnerable organizations and persons around the world to develop and implement sound cybersecurity practices.

Advanced students will spend the majority of their credit hours engaging directly with clients under the supervision of Clinic staff. Emphasis will be on advanced threat research and security mitigations. Enrollment will be by application only. Eligible students will be placed on the waitlist and then contacted with instructions to apply for admission to the course.

This course is designed to act as a bridge between the understanding of irrational human behavior and its application to real-world design problems. In this class, students will learn to approach product design problems through behavioral economics framework. Using a simple iterative approach for understanding and finding target users and behaviors, they will learn how to develop effective interface designs and build products. Drawing upon our industry experience, the class will follow lean and agile methods such as drafting user flows and identifying obstacles to changing behavior. Alumni from different backgrounds would be invited to talk about their experience tackling behavioral design problems at work. This class is aimed at students interested in product design and product management but anyone with an interest in building modern software systems would benefit from this experience.

This course will explore how legal, ethical, and economic frameworks enable and constrain security technologies and policies. As digital technologies penetrate deeply into almost every aspect of human experience, a broad range of social-political-economic-legal-ethical-military and other non-technical considerations have come to envelope the cybersecurity landscape. Though cybersecurity itself is a technical discipline, these non-technical considerations constrain it, enable it, and give it shape. We will explore the most important of these elements. The course will introduce some of the most important macro-elements (such as national security considerations and the interests of nation-states) and micro-elements (such as behavioral economic insights into how people understand and interact with security features). Specific topics include policymaking (on the national, international, and organizational level), business models, legal frameworks (including duties of security, privacy issues, law enforcement access issues, computer hacking, intellectual property, and economic/military/intellectual property espionage), standards making, and the roles of users, government, and industry.

Many products of human invention — political speeches, product reviews, status updates on Twitter and Facebook, literary texts, music and paintings — have been analyzed, not uncontroversially, as “data”. In this graduate-level course (open to all departments, especially those in the humanities and social sciences), we will pursue two ends: we will investigate the landscape of modern quantitative methods for treating data as a lens onto the world, surveying a range of methods in machine learning and data analysis that leverage information produced by people in order to draw inferences (such as discerning the authorship of documents and the political position of social media users, charting the reuse of language in legislative bills, tagging the genres of songs, and extracting social networks from literary texts). Second, we will cast a critical eye on those methods, and investigate the assumptions those algorithms make about the world and the data through which we see it, in order to understand their limitations and when to apply them. How and when can empirical methods support other forms of argumentation, and what are their limits? Many of these techniques are shared among the nascent communities of practice known as “computational social science”, “computational journalism” and the “digital humanities”; this course provides foundational skills for students to conduct their own research in these areas. No computational background is required.

This is an introductory course on design, problem solving and innovation. While the principles generalize to any context, this course focuses on solutions that take the form of digital goods and services.

This is a team-based, experiential learning course. Students who take this course should expect to:

  • Work with a team that includes different backgrounds, interests, and personal motivations. As a cross-listed course, teams may or may not include students from different schools across the University (depending upon enrollment).

  • Experience a process for identifying and prioritizing opportunities to innovate. The process scales from an entrepreneur working alone to Fortune 500 firms managing an innovation portfolio.

  • Practice applying qualitative processes (including customer interviews, paper prototyping, and remote user-testing) to characterize the "job to be done," isolate a "minimum viable problem," and iterate your design prototypes.

  • Practice applying quantitative processes (including analysis of keyword searches, digital ad campaigns, and funnel analysis) to characterize the "job to be done," isolate a "minimum viable problem," and iterate your design prototypes.

  • Formulate hypotheses and then design and execute experiments in a Lean cycle of build, measure and learn.

Teams will learn general principles of product/service design in the context of tools, methods, and concepts specific to the Web-based environment. Both desktop and mobile products and services are prototyped in the Web context to leverage common development and testing resources. For purposes of the course, the product or service should be aimed at consumers in the range 25 - 45. We define this target audience so that we can use classmates as preliminary subjects of interviews, testing, and surveys. For the purposes of this course, the product or service need not have a compelling business model. The focus is on creating a product or service that solves a real problem, not necessarily creating a new business.

This course teaches a process-oriented approach to product and service design with heavy emphasis on user experience design. Students interested in design aesthetics, semiotics and cognitive psychology should look elsewhere. Neither is this a class about technology. The course syllabus does not include tutorials on specific software packages. Students interested in technical questions such as platform selection and scaling should look elsewhere.

This seminar will explore the educational technology (Edtech) sector from policy, design, and legal lenses. Edtech is among the most exciting fields for personalization because such tools may enhance learning. But in practice, Edtech is often poorly implemented. An OECD report recently found that “student performance is mixed at best” from the incorporation of internet and communication technologies in the classroom. At least four different privacy regulatory regimes touch Edtech, yet enthusiasm for the field remains high, with venture funding now reaching almost $2b for the sector. This seminar, following a problem-based learning approach, will explore the Edtech field in depth. What can we realistically expect from Edtech? How can Edtech be used most efficaciously? How do we regulate student privacy and why? How can technology serve the regulatory requirements and ends of policy?
 

This course introduces students to experimentation in the social sciences. This topic has increased considerably in importance since 1995, as researchers have learned to think creatively about how to generate data in more scientific ways, and developments in information technology have facilitated the development of better data gathering. Key to this area of inquiry is the insight that correlation does not necessarily imply causality. In this course, we learn how to use experiments to establish causal effects and how to be appropriately skeptical of findings from observational data.

The ability to manipulate, explore, and analyze structured data sets is foundational to the modern practice of data science.  This course introduces students to data analysis using the Python programming language, especially the core packages NumPy and pandas.  Student learn to operate on data, think critically about features they uncover, and organize results into a persuasive analysis.  Best practices for writing code in a functional style are emphasized throughout the course.   A set of weekly programming assignments reinforces and builds upon the techniques presented in lecture.  The course culminates in a final project in which students write a professional quality analysis based on their own research questions.

This course forms the second half of a sequence that begins with INFO 206.  It may also be taken as a stand-alone course by any student that has extensive Python experience.

The Future of Cybersecurity Reading Group (FCRG) is a two-credit discussion seminar focused on cybersecurity. In the seminar, graduate, professional, and undergraduate students discuss current cybersecurity scholarship, notable cybersecurity books, developments in the science of security, and evolving thinking in how cybersecurity relates to political science, law, economics, military, and intelligence gathering. Students are required to participate in weekly sessions, present short papers on the readings, and write response pieces. The goals of the FCRG are to provide a forum for students from different disciplinary perspectives to deepen their understanding of cybersecurity and to foster and workshop scholarship on cybersecurity.

This course is a graduate-level introduction to HCI research. Students will learn to conduct original HCI research by reading and discussing research papers while collaborating on a semester-long research project. The class will focus on both the positive potentials of technology as well as the negative consequences that new technologies may have on society. Each week the class will focus on a theme of HCI research and review foundational, cutting-edge, and critical theory research relevant to that theme.

Specific topics, hours and credit may vary from section to section, year to year. May be repeated for credit with change in content.

This course surveys privacy mechanisms applicable to systems engineering, with a particular focus on the inference threat arising due to advancements in artificial intelligence and machine learning. We will briefly discuss the history of privacy and compare two major examples of general legal frameworks for privacy from the United States and the European Union. We then survey three design frameworks of privacy that may be used to guide the design of privacy-aware information systems. Finally, we survey threat-specific technical privacy frameworks and discuss their applicability in different settings, including statistical privacy with randomized responses, anonymization techniques, semantic privacy models, and technical privacy mechanisms.

Marketers want to deliver timely and relevant messages to their customers in support of brand building, acquisition, cross-sell, and retention. Though there are a wide array of channels, tools, and technologies available to multi-channel, multi-product marketers, the path to success is not an easy one.

The most formidable challenges include:

  • What Are the Delivery Tools and Technologies Available to Marketers?
  • Where and How to Spend Marketing Dollars Most Effectively?
  • What Metrics Should Be Set to Gauge Success?
  • What Data Are Available to and Generated by the Ecosystem?

The tools, metrics, and data used to execute and evaluate marketing spend can be described as the marketing analytics “ecosystem.” A common industry term is the “marketing technology stack.”

This class will provide a topical overview to the ecosystem and by the end of the class, have an understanding the connectivity between the marketing technology stack, the data utilized, data generated and useful metrics. This background is essential for students interesting in how marketing can drive successful outcomes for customers and for the business.

This is a weekly one-hour seminar on the latest topics in the field of Natural Language Processing (also known as Computational Linguistics). Researchers from across UC Berkeley as well as visitors from out of town will present their recent work for discussion and feedback. Past topics have included multilingual language processing, analyzing social text, analyzing text using joint models, unsupervised morphology induction using word embeddings, deep learning of visual question answering, and unsupervised transcription of music and language.

In Fall 2016, we will meet every week, with alternating weeks consisting of discussions of readings and presentations of new research by local and visiting speakers.

Anyone is welcome to audit the course. Graduate students and undergraduates may enroll in this course for 1 unit of credit. In order to earn that unit of credit, students must write a synopsis of a research paper every two weeks, must attend at least 11 class meetings (and arrive on time), and must lead (or co-lead) at least one discussion of a research paper during the course of the semester.

This course covers the fundamental data structures and algorithms found in many technical interviews. These data structures include (but are not limited to): lists, stacks, queues, trees, heaps, hashes, and graphs. Algorithms, such as those for sorting and searching, will also be covered, along with an analysis of their time and space complexity. Students will learn to recognize when these data structures and algorithms are applicable, implement them in a group setting, and evaluate their relative advantages and disadvantages.

There is a burgeoning market for technologists and lawyers who can understand the application and implementation of privacy and security rules to network connected services. Privacy and Security Lab is a new course designed to promote the development of such “privacy technologists.” Students will meet twice a week, once in lecture, and the second time in a computer lab to gain hands-on skills in privacy and security analysis. The course will explore the concepts, regulations, technologies, and business practices in privacy and security, including how different definitions of “privacy” may shape technical implementation of information-intensive services; the nature of privacy and security enhancing services; and how one might technically evaluate the privacy and security claims made by service providers. There are no prerequisites and enrollment is open to law students to encourage cross-disciplinary exchanges.

Privacy counseling and compliance is a rapidly growing and increasingly important function, both within companies and throughout the legal profession. The task is becoming evermore complex as companies grapple with adherence to new legislation and regulation, as well as local and international standards and norms. This interdisciplinary course seeks to help prepare students for this changing ethical, legal, and regulatory landscape. The academic perspective will be grounded in a real world examination of compliance challenges which will be presented by leading privacy professionals including in-house legal and compliance experts.

This course gives participants hands-on software product design experience based on current industry practice. The course is project-based with an emphasis on iteration, practice, and critique from experienced industry designers. During the course, participants work iteratively on a series of design projects (both solo and in groups) through a full design process, including developing appropriate design deliverables and gathering feedback. We’ll also cover specific topics, including design and prototyping tools, working with and developing design systems, typical phases and deliverables of the design process, and designing in different contexts (e.g. startups vs. larger companies). There will also be guest lectures from industry experts.

Introduces the data sciences landscape, with a particular focus on learning data science techniques to uncover and answer the questions students will encounter in industry. Lectures, readings, discussions, and assignments will teach how to apply disciplined, creative methods to ask better questions, gather data, interpret results, and convey findings to various audiences. The emphasis throughout is on making practical contributions to real decisions that organizations will and should make.

This seminar will discuss topics of current interest in the multi-disciplinary field of ubiquitous sensing. The format will include paper discussions, invited lectures from both within and outside the class, and short written assignments. Students will also be responsible for presenting during at least one class session, either on their own research and ideas or on a selected set of papers relevant to the course topic.

Many of us are interested in looking forward towards future challenges and opportunities (near, medium, and occasionally long term) of the information economy and society. But technology prognostication has a terrible track-record. And keying on worst-case and best-case possibilities is an unrealistic, inefficient, and sometimes dangerous way to generate insight. Scenario thinking is an alternate methodology, developed first by Royal Dutch Shell for use in the energy sector after the oil shocks of the 1970s and later extended more broadly to business, government, and non-profit sectors. Scenario thinking starts from the proposition that the future is unpredictable in any meaningful sense… and that it is possible instead to systematically develop a landscape of possible futures from which useful insights can be drawn, and against which strategic action can be planned. In this seminar we will learn, practice, and develop scenario thinking for the information economy and society. We’ll explore the scientific limits of prediction; decision biases in that setting; and alternative methods for gaining and communicating insight that changes what people think and what they do. We’ll develop our own scenarios and use them to explore systematically challenges and opportunities ahead for the things we care about — business ideas, governance challenges, social change, etc. This seminar will call on a high level of energy, creativity, and open-mindedness as well as great teamwork.

Course Objective: Develop new ideas and technology for making a quantum leap in improving how people learn.

This is an interdisciplinary graduate research seminar whose goal is to design technology and learning practices that will make major, significant improvements over how learning and teaching are done today. The course will have a technology-centered focus, but the most important metrics will be those related to learning gains.

As this is a graduate seminar, students will be responsible for selecting and designing the materials and the presentations in the course, with only light supervision by the instructor.

Students earning 1 unit will do the following:

  • Summarize current research papers and book chapters
  • Complete paper and artifact evaluations before each class
  • Complete in-class assignments, including peer-assessments
  • Present information clearly and concisely
  • Lead class sessions

Students earning 3 units will do the following:

  • The work listed above for 1 unit, and:
  • Innovate in one particular area of research
  • Design, implement, and release a research artifact; one of
  • Working with a team to engineer something great
  • Writing a research paper proposing a future approach based on a detailed analysis of existing approaches

Course Prerequisites

Ph.D. students who have an interest in pushing the state of the art in education and educational technology are the intended participants of this course. It is preferred if students already have some background in learning sciences, but not required. It is also preferred that students have programming background, but also not required, if instead they come from learning sciences or some other relevant non-CS field such as psychology. The same applies to master’s students.

Undergraduates will be accepted to the course if they can demonstrate a proven interest in the topic, relevant background, and can present a recommendation from a UC Berkeley professor or equivalent. (Having taken a course with the instructor is equivalent.) Interested undergraduates should email the instructor with the name of the professor to contact for their reference, and should also include a copy of the UC Berkeley transcript and their resume.

This course takes a multi-disciplinary approach to explore the possibilities and limitations of ubiquitous sensing technologies for physiological and contextual data. We will survey the intellectual foundations and research advances in ubiquitous computing, biosensory computing, and affective computing, with applications ranging from brain-computer interfaces to health and wellness, social computing to cybersecurity. We will cover temporal and spectral analysis techniques for sensor data. We will examine data stewardship issues such as data ownership, privacy, and research ethics. Students signing up for the 3-unit option will continue in the second half of the semester with a student-led research project.

This experiential course provides a framework for creating and managing a startup.

Creating a startup

Students will work in teams of 3 to develop an idea that we will work through over the course of the semester. If students are currently working with a startup, they can use that startup for the process as well. We will focus on the business model canvas as a tool to frame product-market fit and teams will be expected to conduct approx 100 stakeholder interviews over the course of the semester.

Managing a startup

Startups are often faced with resource shortages and overwhelmed with work. We will focus on decision making tools to manage both small issues as well as major pivots in product/service strategy to help bring structure to chaos. The course will cover a mix of tools to do this in the areas of project management and problem solving.

How do you create a concise and compelling User Experience portfolio? Applying the principles of effective storytelling to make a complex project quickly comprehensible is key. Your portfolio case studies should articulate the initial problem, synopsize the design process, explain the key decisions that moved the project forward, and highlight why the solution was appropriate. This course will include talks by several UX hiring managers who will discuss what they look for in portfolios and common mistakes to avoid.

Students should come to the course with a completed project to use as the basis for their case study; they will finish with a completed case study and repeatable process. Although this class focuses on UX, students from related fields who are expected to share examples and outcomes of past projects during the interview process (data science, product management, etc.) are welcome to join.

Digital technologies have brought consumers many benefits, including new products and services, yet at the same time, these technologies offer affordances that alter the balance of power among companies and consumers. Technology makes it easier to deny consumers access to the courts; to restrict well-established customs and rights, such as fair use and the reselling of goods; to manipulate digital fora that provide reviews of products and services; to retaliate against and/or monitor or even extort consumers who criticize them; to engage in differential pricing; to “brick” or turn off devices remotely, to cause systemic insecurity by failing to patch products; and to impose transaction costs in order to shape consumer behavior.

Fundamentally, the move to digital turns many products into services. While the law has long comprehensively regulated products under the Uniform Commercial Code and products liability regimes, artifacts and services with embedded software present new challenges. European governments are moving aggressively to establish comprehensive regulations for digital goods. But no such agenda is on the horizon in the United States.

This course will employ a problem-based learning method (PBL). Students in the course will work in small groups to generate hypotheses, learning issues, and learning objectives in digital consumer protection. Through this process we will develop a high level conception of consumer protection and its goals. We will then explore its fit in the digital realm.

Students will develop short presentations on these learning objectives to create group learning and discussion. For the culmination of the course, students will work together to generate a research agenda for the future of digital consumer protection.

Much as Adam Smith saw his own age as marked by its engagement with “commerce” and thereby distinguished from all ages that had come before, it has become conventional to see our own era as a break from all that has preceded it, and thus distinguished principally by its engagement with information and computing technologies. Scholars have labeled the contemporary era as the “post-industrial,” “postmodern,” or “network society,” but probably the most widely used and enduring characterization distinguishes the present day as the “information age” or “information society.” This course will explore the notion of an “information society,” trying to understand what scholars have held to be the essential and distinguishing features of such a society, how these views compare with classic theories of society or with alternative accounts of the present age, and to what extent different conceptions of the “information age” are compatible. In pursuing this investigation, we shall bear in mind the admonition of the legal scholar James Boyle that while the idea of an “information age” may be “useful ... we need a critical social theory to understand it.” In the process of developing a critical, social, and political-economic analysis of this idea, we hope to assemble a corpus of information society readings.

Last updated:

February 15, 2019