Info C260F

Machine Learning in Education

3 units

Course Description

What insights about student learning can be revealed from data, and how can those insights be used to improve the efficacy of educational technology? This course will cover computational approaches to the task of modeling learning and improving outcomes in Intelligent Tutoring Systems (ITS) and Massive Open Online Courses (MOOCs). We will cover theories and methodologies underpinning current approaches to knowledge discovery and data mining in education and survey the latest developments in the broad field of human learning research.

This course will be project based, where teams will be introduced to online learning platforms and their datasets with the objective of pairing data analysis with theory or implementation. Literature review will serve to add context and grounding to projects.

Suggested background includes one programming course and familiarity with one statistical/computational software package.

The study of learning in online environments is an interdisciplinary pursuit, and therefore all majors are welcomed and encouraged to bring complimentary backgrounds.

NOTE: This course is cross-listed as Education C260F. Machine Learning in Education.

(Previously offered as Info 290 & Educ 290A.)

Prerequisites

Suggested background includes one programming course and familiarity with one statistical/computational software package

Last updated:

August 7, 2017