Data Science 281
Computer Vision
3 units
Course Description
This course introduces the theoretical and practical aspects of computer vision, covering both classical and state of the art deep-learning based approaches. This course covers everything from the basics of the image formation process in digital cameras and biological systems, through a mathematical and practical treatment of basic image processing, space/frequency representations, classical computer vision techniques for making 3-D measurements from images, and modern deep-learning based techniques for image classification and recognition.
Student Learning Outcomes
-
Be able to read and understand research papers in the computer-vision literature.
-
Build computer vision systems to solve real-world problems.
-
Properly formulate problems with the appropriate mathematical and computational tools.
-
Understand the building blocks of classical computer vision techniques.
-
Understand the building blocks of modern computer vision techniques (primarily artificial neural networks).
-
Understand the process by which images are formed and represented.
Course Designers
Profile profile for hfarid
Prerequisites
Course History
Fall 2023
Summer 2023
Spring 2023
Fall 2022
Summer 2022
Spring 2022
- 1 of 2
- next ›