Gusto

Style and Motivation-Driven Store Search
TEAM

Advisor: Steven Weber
TODAY

- Idea
- Approach
- Technical
- Demo
- Outcome
QUESTION:
Why do people still go to stores?
Online shopping can't do everything - you have to wait for what you order and sometimes pay for shipping.

"Sometimes physical shopping leads me to new discoveries."

"Shopping in stores gives me ideas. It’s an aspirational tool to help me figure out how to decorate."
IN-STORE ≠ ONLINE
PROBLEM

How do you help people online find accurate representations of stores that are offline?
GOAL

Return clear, concise, high-relevancy matches to consumers seeking local stores - not goods - that fit their personal style and immediate in-the-moment interests.
TODAY

- Idea
- Approach
- Technical
- Demo
- Outcome
RESEARCH PROCESS

Existing Research → User Validation → Insights
KEY INSIGHTS

- Hedonic shopping motivations are significant
- Shoppers constantly weigh costs and benefits
- Store ambience matters
PROPOSED INNOVATIONS

Abstracting shopper motivations
- Adventure
- Bargain
- Convenience

Descriptive, vivid store profiles

Simple, vector-based style matching
CORE PRINCIPLES

CLARITY | SIMPLICITY | HONESTY

Human Terminology | Reducing Choice | Transparent Information
TODAY

- Idea
- Approach
- Technical
- Demo
- Outcome
TECH SUITE

Ruby on Rails, Heroku and AWS
Fast prototyping/deployment
External libraries for authentication, image management, location, etc.
SEARCHING FOR STORES

CONTEXT
- In-the-moment Needs
 - Space
 - Access
 - Goods
 - Ambience
 - Services

SEARCH
- Filter by CONTEXT
- Order by PREFERENCES

PREFERENCES
- Persistent Over Time
 - Modern
 - Vintage
 - Outdoor
 - Traditional
 - Contemporary
DEMO
TODAY

- Idea
- Approach
- Technical
- Demo
- Outcome
CHALLENGES

- Scalability of curation model
- Replicable technology, low barriers
- Uncertain revenue model
GUSTO IN THE FUTURE

- Opportunity to reduce complexity
- Gusto models a streamlined approach
- Similar abstraction for many industries
Thank you!
COSINE SIMILARITY COMPARISON

- We choose the most common styles trends to create a preferences’ vector.
- We can add new dimensions and surveys to improve search results.
- Previous responses are not affected by the new dimensions/responses.

<table>
<thead>
<tr>
<th>Styles</th>
<th>Store</th>
<th>Store</th>
<th>User 1</th>
<th>User 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Modern</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vintage</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tradition</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

In the example, User 1’s preferences are closer to store 1 than store 2.

Cosine similarity allow us to compare more complex values, gathered in multiple ways: experts, user feedback, product analysis, etc.