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Bleeding Edge Models Get Better
Ata Cost to Size

Models Are Getting Larger
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The Solution...

Neural Network Compression
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Reduces model size, enabling
deployment on
resource-constrained
devices

Lowers computational and
energy costs, making ML
more sustainable and
cost-effective



Knowledge Distillation is the Bleeding Edge
Solution for Compression
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Knowledge Distillation Zoomed-0Out

BE Large, performant model acts as ﬁ ﬁ
teacher

t’
~+a A smaller, predefined model
F2 learns to mimic the outputs of \

the teacher



But... Knowledge Distillation Inflates Bias
asitLearns from aBiased Teacher

BE Teacher models learn a task well, ﬁ ﬁ
but can learn stereotypes just like
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a human
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We Make Models Smalier,
While Mitigating Bias Inflation
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Establish comprehensive evaluation metrics, to
include bias, for top performing Knowledge
Distillation techniques

Integrate debiasing into the knowledge distillation
framework for image classification



Knowledge Distillation First Introduced

[[=] Classic Knowledge Distillation
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New Knowledge Distillation Frameworks

% Relational Knowledge Distillation
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Knowledge Distillation First Introduced
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New Knowledge Distillation Frameworks
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We Propose a New Metric for
Knowledge Distillation...

Disparity

recall( 6 ‘ %) - recall( Q‘ Ld?)



https://www.fairlearnkd.com/demo

WIDER - An Attributed Dataset for
Fairness Research

- WIDER Attribute dataset
o 13,789 images
o 30 event-type classes clustered to 16
- 14 human attributes condensed to 1 protected attribute - gender
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To Reduce Bias,
We Incorporate An Adversarial Attack
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Model Evaluation

Models Tob-1

Method | (Teacher- P Recall Precision F1 Disparity
Accuracy

Student)

EfficientNet_b3 - _ _ _ _ _
CKD EfficiontNet. bO 64.9-65.0 64.9-65.0 66.0-65.0 64.6-64.7 9.1-9.8

EfficientNet_b3 - ~ ~ ~ ~ _
RKD EfficiontNet. b 65.1-65.6 65.1-65.6 66.3-65.7 65.3-65.2 8.4-12.3
CTKD EfficientNet_b3 - 66.6-63.7 66.6-637 | 66.0-642 | 659-634 | 10.6-12.3

EfficientNet_bO

KD++ EfficientNet_b3 - 621-59.6 621-59.6 61.7-60.6 60.6-59.6 8.1-11.0

EfficientNet_b0O




Without Debiasing, the StudentLearns
to Stereotype

No Debiasing: Disparity Across Classes Reveals Heavy Bias
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With an Adversary Attack, the Model
Becomes Less Biased

With a lambda of 0.5,
we achieve a mean
absolute value
disparity of 0.0748.

This represents a 39%
reduction in bias over a
student model with no
debiasing, with only a
0.36% penalty to
accuracy.

Debiasing Results In A Rebalancing Of Class Predictions
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The Adversary Course Corrects the

With a lambda of 0.5,
the adversary corrects
the recall disparity of ﬁl Teacher - Biased
the surgeon class by

92%, and the business

class by 24%, resulting A% Student - Biased

in fairer predictions
% Student - Debiased

with minimal impact to
overall performance.
-20

A Closer Look At Debiasing Results Reveals Steep

Corrections At The Class Level
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Attribute: Female Attribute: Male Attribute: Female
Not-Debiased: Waitress Not-Debiased: Team Sports ~ Not-Debiased: Family
De-Biased: Business De-Biased: Entertainment De-Biased: Surgeons
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Mean Absolute Disparity

And Generally, The Stronger We Make
The Adversary, The Lower The Bias

That Bias Decline Will Come

Higher Lambda Values Can Result
With Lower Accuracy

in Lower Bias
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3D Plot Views
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There is an Inverse Relationship Between
Bias and Accuracy, Asymptotically

At a Lambda of 150 (High Adversary
Prioritization) Disparity Declines Significantly..
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Project Mission Statement

This project is dedicated to applying advanced Neural
Network Compression strategies, enabling efficient
deployment on resource-constrained edge devices while
maintaining optimal performance levels. A key focus is to
introduce and emphasize a diverse array of metrics,
typically overlooked in this field. Furthermore, a crucial
aspect of our mission is to thoroughly examine and actively
reduce the propagation of bias within these compressed
models, ensuring more equitable and responsible use of
neural network technology.
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