Enhancing Knowledge Distillation via Bias Mitigation

55

EE: 32 1.8

08:09

0

Our Team

Michelle Bolner

Data Scientist / PM / ML Ops

Keith Hutton

Data Scientist / DE / ML Ops

Landon Morin

Data Scientist / DE / ML Ops

Lindsey Bang

Data Scientist / PM / ML Ops

Bleeding Edge Models Get Better At a Cost to Size

Models Are Getting Larger

SPEECH RECOGNITION

IMAGE RECOGNITION

Increased computational demand and size

16X 10X Mode Training Ops 152 lavers 465 GFLOP 22.6 GFLOP 12,000 hrs of Data -5% Error -3.5% error 8 lavers 80 GFLOP 7,000 hrs of Data 1.4 GFLOP -8% Error -16% Error 2012 2015 2014 2015 Deep Speech 1 Deep Speech 2 AlexNet ResNet Microsoft Baidu

Dally, NIPS 2016 workshop on Efficient Methods for Deep Neural Networks

The Solution... Neural Network Compression

Reduces model size, enabling deployment on resource-constrained devices

Lowers computational and energy costs, making ML more sustainable and cost-effective

Knowledge Distillation is the Bleeding Edge Solution for Compression

Compress model size

Secure

Robust against domain shift

Knowledge Distillation Zoomed-Out

A smaller, predefined model learns to mimic the outputs of the teacher

But... Knowledge Distillation Inflates Bias as it Learns from a Biased Teacher

Teacher models learn a task well, but can learn stereotypes just like a human

As the student learns from the teacher, these stereotypes can be exaggerated

We Make Models Smaller, While Mitigating Bias Inflation

Establish comprehensive evaluation metrics, to include bias, for top performing Knowledge Distillation techniques

	\odot
-	Ť

Integrate debiasing into the knowledge distillation framework for image classification

Knowledge Distillation First Introduced

Classic Knowledge Distillation

New Knowledge Distillation Frameworks

Relational Knowledge Distillation

Knowledge Distillation First Introduced

Curriculum Temperature Knowledge Distillation

New Knowledge Distillation Frameworks

Regularizing Feature Norm and Direction

We Propose a New Metric for Knowledge Distillation...

Disparity

 $recall(\uparrow | \forall) - recall(\bigcirc | \forall)$

WIDER – An Attributed Dataset for Fairness Research

- WIDER Attribute dataset
 - o 13,789 images
 - 30 event-type classes clustered to 16
 - 14 human attributes condensed to 1 protected attribute gender

To Reduce Bias, We Incorporate An Adversarial Attack

Model Evaluation

Method	Models (Teacher - Student)	Top-1 Accuracy	Recall	Precision	F1	Disparity
СКД	EfficientNet_b3 - EfficientNet_b0	64.9-65.0	64.9-65.0	66.0-65.0	64.6-64.7	9.1-9.8
RKD	EfficientNet_b3 - EfficientNet_b0	65.1-65.6	65.1-65.6	66.3-65.7	65.3-65.2	8.4-12.3
СТКД	EfficientNet_b3 - EfficientNet_b0	66.6-63.7	66.6-63.7	66.0-64.2	65.9-63.4	10.6-12.3
KD++	EfficientNet_b3 - EfficientNet_b0	62.1-59.6	62.1-59.6	61.7-60.6	60.6-59.6	8.1-11.0

Without Debiasing, the Student Learns to Stereotype No Debiasing: Disparity Across Classes Reveals Heavy Bias

With no student-level debiasing, the student maintains a high average bias of .1226, which represents a **46% increase over the Teacher's bias of 0.0840**

Disparity

With an Adversary Attack, the Model Becomes Less Biased

With a lambda of 0.5, we achieve a **mean absolute value disparity of 0.0748.**

This represents a **39%** reduction in bias over a student model with no debiasing, with only a **0.36% penalty to** accuracy.

The Adversary Course Corrects the Student Model A Closer Look At Debiasing Results Reveals Steep

With a lambda of 0.5, the adversary **corrects the recall disparity of the surgeon class by 92%,** and the **business class by 24%,** resulting in fairer predictions with minimal impact to overall performance.

Corrections At The Class Level

Demo

Attribute: Female Not-Debiased: Waitress De-Biased: Business

Attribute: Male Not-Debiased: Team Sports De-Biased: Entertainment

Attribute: Female Not-Debiased: Family De-Biased: Surgeons

And Generally, The Stronger We Make The Adversary, The Lower The Bias

3D Plot Views

There is an Inverse Relationship Between Bias and Accuracy, Asymptotically

...but at High Lambdas (High Adversary Prioritization), Accuracy is Penalized

Project Mission Statement

This project is dedicated to applying advanced Neural Network Compression strategies, enabling efficient deployment on resource-constrained edge devices while maintaining optimal performance levels. A key focus is to introduce and emphasize a diverse array of metrics, typically overlooked in this field. Furthermore, a crucial aspect of our mission is to thoroughly examine and actively reduce the propagation of bias within these compressed models, ensuring more equitable and responsible use of neural network technology.

Reference

Literature Review

"Distilling the Knowledge in a Neural Network (Classic Knowledge Distillation), 2015, Hinton et al. https://arxiv.org/abs/1503.02531

"Relational Knowledge Distillation", 2019, Park et at. https://arxiv.org/abs/1904.05068

Knowledge Distillation : model compression accelerates inference speed in edge devices, 2021, https://medium.com/@hintkit/introduction-to-knowledge-distillation-3345b567d121

Yang, J., Soltan, A.A.S., Eyre, D.W. et al. An adversarial training framework for mitigating algorithmic biases in clinical machine learning. npj Digit. Med. 6, 55 (2023). <u>https://doi.org/10.1038/s41746-023-00805-y</u>

Dong, Y., Zhang, B., Yuan, Y., Zou, N., Wang, Q., & Li, J. (2023). RELIANT: Fair Knowledge Distillation for Graph Neural Networks. [Preprint]. arXiv. https://arxiv.org/abs/2301.01150

Zhu, K., & Wu, J. (2021). Residual Attention: A Simple but Effective Method for Multi-Label Recognition. arXiv preprint arXiv:2108.02456.

Images, Slide Design, and Logos

Slide Template, Images & Icons

<u> Slide Template - Slidesgo</u>

Logos - nounproject

<u>Logos - canvas</u>

Competition Models Diagrams - Medium

<u> Title Slide Image - ChatGPT</u>

Appendix

Pipeline for Fairness and New Metrics

Competition Model Metrics