Second Sight

W210 Synthetic Capstone

Camille Church | Amanda Teschko | Cameron Wright | Lisa Wu

The Team

Camille Church

Amanda Teschko

Cameron Wright

Lisa Wu

Problem Space

In the US alone, **20 million** people are affected by visual impairments Of those affected, **27%** are living below poverty level Prices can reach \$5000+ for other tools on the market

Q

Our MVP Solution

Solution

Our solution combines text image recognition models and text-tospeech capabilities, in an application that is both affordable and safe

Impact

Our project endeavors to provide a mobile application that is free to access for visually impaired people to aid their day to day lives

Target User

Those struggling with reading text (Presbyopia), who seek more affordable care, and own smartphones

User Need

Ability to understand handwritten and typed text

Easy to open and use app

Confidence and trust in the results simple app interface

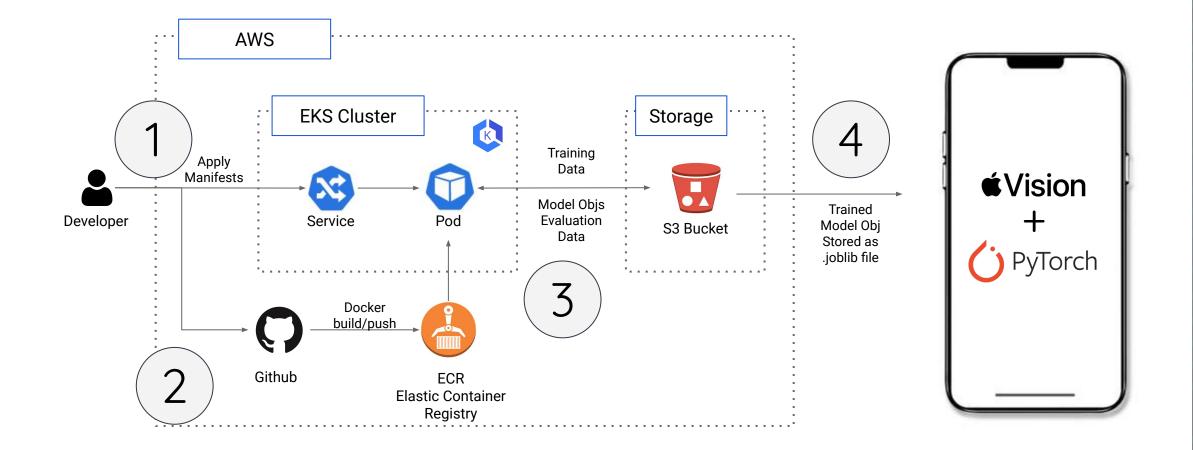
Voice enabled prompts and a

Warnings to indicate when results are not clear or caution should be exercised

Cost effective

All processing done on phone; Free to use app

Feature


Fine tuning typed text OCR models to understand handwriting

Demonstration

5

End to End Architecture

7

General OCR System

we only address Text Recognition in our modeling

Modeling Approach

Pre-trained Transformer (TrOCR)

Hugging Face

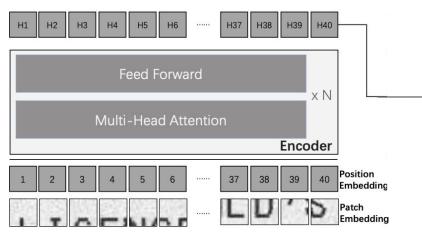
Task Specific Datasets

we developed our Text Recognition model by fine-tuning a pre-trained transformer on task specific datasets

Model Architecture (TrOCR)

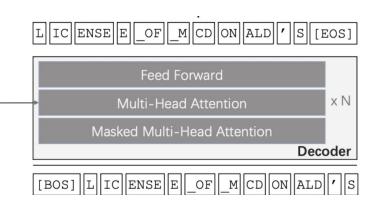
Step 1: Raw Pixels

LICENSEE OF MCDONALD'S


• Read in the raw pixels

Step 2: Image Patches

LICENDEE OF	MCDUMIHLUMS


• *Resize and segment the image*

Step 3: Hidden States

• Create patch embeddings and pass these through encoder layers

Step 4: Word Pieces

• Produce words using hidden states and previous word predictions

Model Experiments

TrOCR Model Version	Model Training Work	
Base Handwritten (HW) Model	no fine-tuning	
Large HW Stage 1 Model	fine-tuned for 20 epochs	
Large Printed Model	no fine-tuning	

We used both handwritten and printed datasets in our model experiments

Dataset	Text Image Type	Key Challenges	Image Examples	
	Handwritten	 Unique handwriting styles Variety in text length Variety in image quality 	fine quickly	
Font Recognition Dataset ²	Printed (Uncommon Words)	 Variety in text length Variety in image quality Uncommon words 	sinuatoundulate problemedicision	
Self Dataset ³	Printed (Common Words)	 Variety in text length Variety in image quality 	comfortable. Strength	

1. IAM is a handwritten dataset with 96k text images in English (link)

2. Font Recognition dataset is an unlabeled dataset obtained from Kaggle (link). We manually labeled ~1400 images

3. Self dataset is a new dataset (~ 300 text images) that we generated by taking photos of various text images.

Model Evaluation Metrics

Measure Accuracy by individual letter

- Developed by our team
- \circ $\,$ Two versions: case sensitive and case insensitive

• Measure Accuracy by the entire word

- Developed by our team
- \circ $\,$ Two versions: case sensitive and case insensitive

• Measure Character Error Rate (CER)

- CER is common metric for text image recognition
- The lower the CER value, the better the performance of the model

Key Challenges & MVP Solutions

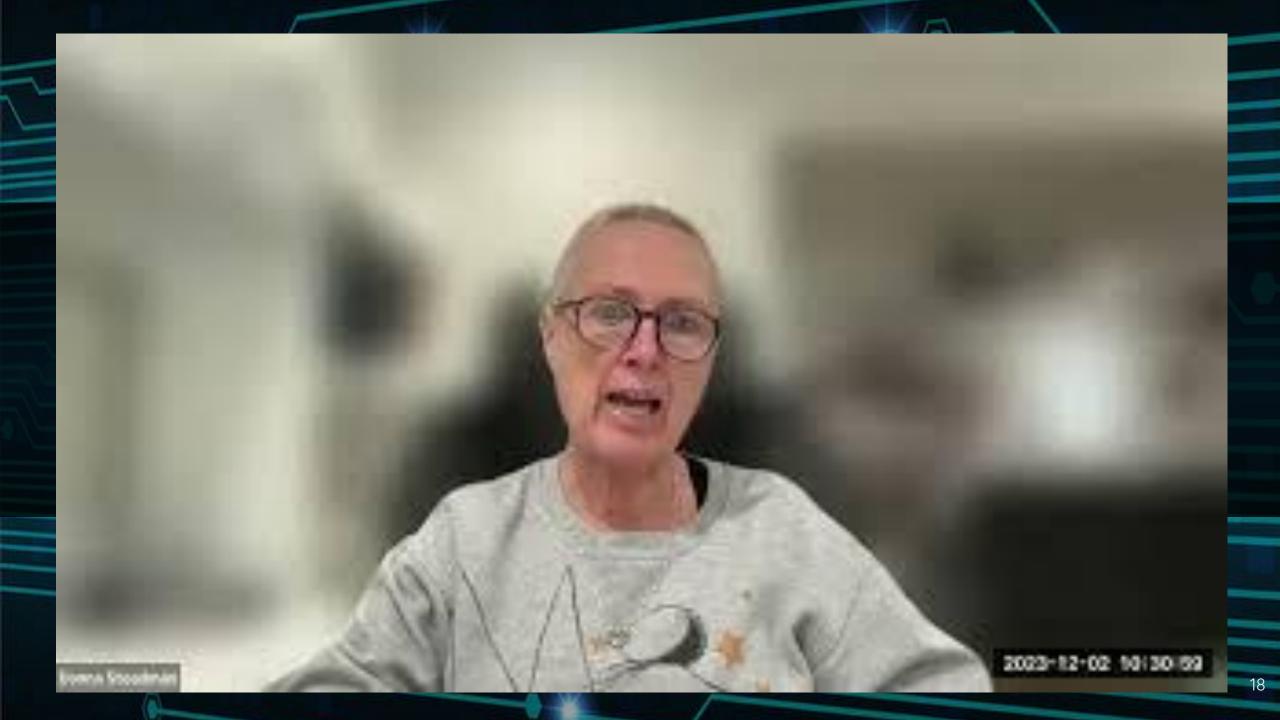
- Handwritten text images are very challenging to model and predict
 - Unstructured data
 - High variance in style, image quality and text length
 - Order matters for sequential data
- A large size internal model(s) is difficult to house on a mobile application

• MVP Solutions:

- Fine-tuned TrOCR models with the IAM dataset
- Used Apple OCR model in our mobile application

Model Evaluation Results - Word Accuracy

	Handwritten Text Data	Printed Text Data	
Model	IAM	Font Recognition Dataset	Self Dataset
Base HW Model	65.2%	n/a	n/a
Large HW Stage 1 Model (Fine-tuned)	68.8%	33.7%	32.7%
Large HW Stage 1 (Fine-tuned + NLP Spell Check)	72%	e 0-7-	53.3%
Large Printed Model		84%	93%
	Decent Model Performance	e Model Performanc	e near the Target State


Key Learnings

- Typed and handwritten text may require separate models
- Keeping processing on the phone will limit how complex and large our model can be
- Pre-trained transformers can provide a great start when developing OCR models
- Finding high quality datasets for fine tuning is challenging -> may require creating your own

Key Learnings & Product Roadmap

- [Model] Progress generalizability of model and conduct end-to-end testing for challenging use cases (such as curved or blurred text and currency)
- [Model] Add non-English languages to our model development
- [Model] Consider opportunities for model size reduction or explore implications of web based solutions

- [App] Launch to a broader community of users for more testing
- [App] Incorporate features from user feedback
- [App] Point application to our latest model

Our Mission

Democratize text recognition technologies and aid a population of people worldwide who are struggling with vision impairment or

weaknesses

Join our mission by downloading Second Sight today!

Questions

Download our App