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Abstract

A high-quality parallel natural language and
programming language (NL-PL) corpus is es-
sential for many downstream tasks such as
code retrieval, code summary, and code syn-
thesis. Traditional approaches to acquire this
parallel corpus struggle primarily with the is-
sues of transferbility and scalability as query-
ing programming languages require training
models separately for each programming lan-
guage or handcrafting specialized representa-
tions. In particular, approaches that incorpo-
rate the programming language in the model
have to incorporate a lot of domain knowl-
edge to be able to generalize well to other lan-
guages (Yin et al., 2018). On the other hand,
approaches that incorporate only natural lan-
guage (Yao et al., 2018) do not fully exploit
the semantic similarity between syntax of dif-
ferent programming languages (eg: print in
Python is similar to println in Java)

We bridge this gap by treating the problem
as a question answering task, and propose Se-
quence Labeling based Question Answering
(SLQA) for this purpose. Specifically, for a
question answering pair in Stack Overflow, the
model analyzes the natural language and pro-
gramming language in the code block of the
answer post to infer whether the code block
answers the question. Furthermore, since our
model uses Byte Pair Encoder (BPE) tokeniza-
tion, our code retrieval model exploits the sub-
word similarity in syntax of various program-
ming languages, allowing it to scale to multi-
ple languages without any domain knowledge.

1 Introduction

Although semantic natural language (NL) annota-
tion of programming language (PL) involves semi-
structured data, acquiring this parallel data has
not been easy. Availability of high-quality aligned
natural language-programming language (NL-PL)
pairs is essential for not only the implementation of

downstream tasks such as code retrieval (Allamanis
et al., 2015; Wei and Ch, 2015; Husain et al., 2020),
code summarization (Allamanis et al., 2016; Iyer
et al., 2016), code synthesis (Locascio et al., 2016;
Desai et al., 2016; Quirk et al., 2015; Yin and Neu-
big, 2017; Clement et al., 2020), but also evaluation
of these models. Traditionally, efforts in acquiring
this parallel corpus was done through mining struc-
tured yet highly contextualized resources such as
official documentation of programming languages
found on sources like Github or unstructured but
more generalized sources like StackOverflow. Cur-
rent approaches (Yin et al., 2018; Iyer et al., 2016;
Yao et al., 2018) struggle primarily with the issues
of transferbility and scalability as querying PLs re-
quire training models separately for each program-
ming language (Yao et al., 2018) or handcrafting
specialized representations (Iyer et al., 2016; Yin
et al., 2018).

Figure 1: Our work compared to MRC based QA and
code retrieval. Our model is able to mine aligned natu-
ral language and programming language pairs without
understand the semantic meaning of code.

On the other hand, recent modelling efforts



in machine reading comprehension (MRC) have
shown some exciting results. In particular, state of
the art Question Answering (QA) models such as
BiDAF (bid) and DrQA (Chen et al., 2017) have
illustrated interesting approaches to identify the
correct answer span within a textual context. So, in
order to allow the model to effectively find NL-PL
pairs, we are inspired by machine reading compre-
hension based question answering (Rajpurkar et al.,
2016; Yang et al., 2018) and treat this problem as
a question answering problem on Stack Overflow:
for a given Stack Overflow post, we consider its
question title as the question and the code blocks in
the answer that can solve the question as the answer.
While span prediction can be applied to NL-PL
tasks, word level span prediction models will still
require training a different model for each program-
ming language. Sequence Labeling based Question
Answering (SLQA) circumvents this problem by
treating each code-block as a separate token and
instead use sequence labelling to indicate whether
that code-block is part of the answer span. Specif-
ically, we use the IOB tagging format technique
(Ramshaw and Marcus, 1995), which allows the
model to predict multiple token spans as answers.
The contributions of this work are as follows

• SLQA - A transformer based model that uses
sequence labeling to identify question-code
pairs

• Empirical results that show SLQA is the first
NL-PL model that has shown effective trans-
fer learning from one programming language
to many other programming language

• We further present a dataset with about
800,000 NL-PL parallel corpus

2 Relevant Work

2.1 Structured Code Documentation as NL

Previous work acquired such aligned NL-PL pairs
mining using weak or no supervision over official
documentation. Using week or no supervision is in-
tentional as acquiring NL-PL pairs at scale requires
mining large corpus. CodeSearchNet(Husain et al.,
2020) and PyMT5(Clement et al., 2020) a collec-
tion of about 2 million and 7.7 million function-
documentation pairs respectively. Availability of
these datasets propelled models that used natural
language to query programming ones (Feng et al.,
2020; Yan et al., 2020). However, unsurprisingly

this dataset is noisy due to the difference in lan-
guage used between the documentation and nat-
ural language. Language used in documentation
is fundamentally different from natural language
in that it is often written by the same author who
has written the code and therefore does not differ
much from the vocabulary in the code (Husain et al.,
2020). Furthermore, to truly query a programming
language database requires a semantic mapping
between general and simple natural language and
programming language, whereas documentation
language is highly contextual and specific.

2.2 Unstructured Code Forums as NL

While official documentation sites like Github
serve as structured resources to mine these pairs, a
less structured but more relevant resource is Stack-
Overflow. This is often done by using the question
title as the query, and part of the answer as the
corresponding code snippet based on a handcrafted
approach (Allamanis et al., 2015; Zilberstein and
Yahav, 2016). Neural Code Search (NCS) (Sachdev
et al., 2018) adopted an unsupervised approach that
uses Aroma (Luan et al., 2019) and StackOver-
flow’s data for code and natural language respec-
tively to map pairs of that are semantically similar.

More recently, neural networks were used for
this task. Among them, Code-NN (Iyer et al., 2016)
uses posts that has only one code block to generate
code summaries based on the question title. Conala
(Yin et al., 2018), on the other hand, used a com-
bination of handcrafted rules and neural network
model for mining Python and Java forums, where
the handcrafted approach relies on a prior knowl-
edge of the language, and the neural network model
trains a classification model using just the code
snippet to identify the line of code that is most
relevant. StaQC (Yao et al., 2018) incorporated
question title and local textual context and used a
binary model to determine whether a code block is
aligned with the surrounding textual context.

Due to the fact that Stack Overflow’s data is
largely unstructured, efforts in modelling using this
data struggle with two main issues. First, if code
information is used (Yin et al., 2018), they need
to model a separate model for each programming
language. Second, because StackOverflow’s an-
swer body is interspersed with code blocks along
with textual data, local textual context based mod-
els (Yao et al., 2018) suffer from inability to retain
alignment among the overall textual data.



2.3 Related work in other domains of NLP

In traditional MRC based QA tasks ((Rajpurkar
et al., 2016), (Yang et al., 2018), etc.), there is often
one correct answer span for a given question and
passage. State of the art QA models such as BiDAF
(bid) and DrQA (Chen et al., 2017) have used trans-
former based models to predict the beginning and
end of the span within the passage that answers
the question. Since StackOverflow’s answer posts
is natural language corpus interspersed with code-
blocks, we have chosen to adopt sequence labelling
approach (Erdogan, 2010), in particular we will be
using IOB tagging. IOB tagging is widely used in
fields such as named entity recognition (Lample
et al., 2016), where multiple instances of data need
to identified as part of an entity. Furthermore, we
believe using code language along with natural lan-
guage could be useful in training to track similar,
but not same, words (eg: print in python is similar
to println in Java). To this end, we also used Byte-
Pair Encoding (BPE)(Gage, 1994) tokenization to
represent our data. BPE is a sub-word tokenizing
approach which is useful to map similar words

3 Preliminaries

In this section, we provide a task definition and
describe our annotation approach.

3.1 Task Overview

Given a Stack Overflow question title and its ac-
cepted answer, we aim at finding consecutive code
blocks in the accepted answer that can solve the
question. Some solutions will be consist of mul-
tiple code blocks, and other solutions might only
have a single code block. The ultimate goal of
the task is to identify all potential solutions in the
answer post.

3.2 Manual Annotation

Different from the annotation approach proposed in
previous works (Yin et al., 2018; Yao et al., 2018),
we did not use a classifier to determine whether a
question is a how-to question or not, instead, our an-
notation is consist of two parts: first, we annotated
questions with binary categories to label whether
they are how-to question; second, we annotate the
answer body of a how-to question with IOB labels.

During the pilot annotation study, we had all
three of the annotators to annotate the same set of
sample Python data extracted from the Stack Over-
flow data dump. We went through five iterations

Lang2Code how-to non-how-to
# % # %

Python 1323 71.4 529 28.6
SQL 70 70 30 30
R 80 80.8 19 19.2
Git 75 75.8 24 24.2
Java 53 53.5 46 46.5
Linux 69 69.7 30 30.3

Table 1: The annotated how-to-question statistics of
Lang2Code-human

of the pilot study before finalizing the annotation
protocol. In the final iteration, the average Cohen’s
kappa for how-to questions is around 0.717, and the
average Cohen’s kappa for IOB tagging is around
0.785.

After the annotation protocol has been finalized,
each annotator was assigned a set of sample data
for annotation. The data are mutually exclusive so
that each post is only annotated once.

3.2.1 How-To Questions

A how-to question classifier is a binary classifica-
tion model that classifies whether a given question
post (title and question body) is a how-to question
or not. This was important to ensure our dataset
does not include highly specific debugging ques-
tions or very vague question posts. While we did
not adopt a how-to question classifier during the
annotation stage, we implemented one based on
the annotated data for processing the larger Stack
Overflow data dump in the future. The dataset in-
cludes 2351 hand-annotated labels for the classifier
from Python, Java, SQL, R and Git related ques-
tions. The specific split of the languages are shown
in Table 1. About 1100, 500 and 700 were used as
training, validation and test sets respectively.

The primary evaluation metric we were con-
cerned with while evaluating models was the pre-
cision score. As we will be using this model to
classify large corpus of data whether they are how-
to question or not, which we will further use to
annotate answer posts, we wanted to minimize the
false positive rate. We tried multiple models and
have chosen pre-trained BERT-based model as our
final classification model has it has performed the
best in terms of precision with a precision score of
92.40% on the test set.



Figure 2: Overall pipeline of our work

3.2.2 IOB Tagging

Once we determined that a question is a how-to
question, we annotate the code blocks in the ac-
cepted answer with IOB tagging indicating which
code block(s) answer the question.

Different from the traditional IOB tagging ap-
proach in NER, where the tagging is done at the
word level (Curran and Clark, 2003), we modi-
fied the approach to tag only the standalone code
blocks but not the surrounding text or the in-line
code blocks. We also decided to ignore in-line code
blocks as our pilot annotation study found that most
of the solutions reside in standalone code blocks
rather than in-line code blocks.

For the standalone code blocks, the general idea
behind our annotation protocol is that: 1) all code
blocks that forms a standalone solution by itself
are labelled as ”B”; 2) for code blocks that together
form a joined solution, the first code block is la-
belled as ”B”, and all subsequent code blocks are
labelled as ”I”; 3) all code blocks that neither form
a solution by themselves nor constitute a joined
solution are labelled as ”O”.

4 Datasets

Our experiments are mainly based on two datasets,
which will be referred to as StaQC-human and
Lang2Code-human respectively in the following
sections. StaQC-human refers to the manually an-
notated dataset provided by the StaQC study, and
Lang2Code-human refers to the dataset annotated

by ourselves. We are not using CoNaLa datasets in
this study because their annotation is not performed
at code block level.

4.1 StaQC-human

StaQC-human contains 2,169 and 2,056 manually
annotated question-code (QC) pairs for Python and
SQL. Since they focus solely on standalone solu-
tions, they annotate a code block as a solution if
and only if the code block can solve the question by
itself, which means that the dataset does not con-
tain any solution that is consists of multiple code
blocks.

Given that their annotation is at single code block
level, their training, validation, and test sets are also
generated in a similar manner. Instead of splitting
data at post level, they chose to perform the split at
single code block level, that is, code blocks from
the same post may end up be in different sets. We
think this approach can be questionable. On the
one hand, it may cause potential data leakage as
consecutive code blocks will share the same text
block between them. On the other hand, they failed
to take advantage of the information resides in the
post as a whole. Therefore, we decided to reorga-
nize their data at post level. We kept only the posts
that have all their code blocks annotated shuffled
the data at post level before splitting it into 80%
training, 10%validation, and 10% test sets. The
results are summarized in Table 2.



# of posts stand-alone solution
code blocks

joint solution
code blocks

non-solution
code blocks

# % # % # %
Lang2Code Python-train 1058 1328 46.1 423 14.7 1131 39.2

Python-valid 132 185 48.3 58 15.1 140 36.6
Python-test 133 178 48.0 44 11.9 149 40.2
SQL-test 70 91 49.5 33 17.9 60 32.6
R-test 80 88 40.7 44 20.4 84 38.9
Git-test 75 63 29.9 107 50.7 41 19.4
Java-test 53 47 34.1 68 49.3 23 16.7
Linux-test 69 87 42.4 63 30.7 55 26.8

StaQC-human Python-train 1139 1354 45.9 0 0.0 1592 54.1
Python-valid 142 181 47.9 0 0.0 197 52.1
Python-test 143 164 44.6 0 0.0 204 55.4
SQL-train 1056 1632 61.6 0 0.0 1016 38.4
SQL-valid 132 201 61.8 0 0.0 124 38.2
SQL-test 133 190 58.5 0 0 135 41.5

Table 2: The statistics of Lang2Code-human and StaQC-human. StaQC-human is reorganized at post level using
the original data.

4.2 Lang2Code-human

Lang2Code-human is sampled from Stack Over-
flow’s raw data dump (cite) and manually anno-
tated by three annotators. We focused on Python
as the primary programming language, which is
later used as the training data and part of the test
data. Since we also want to test whether our model
will scale to multiple languages without training
on every single languages, we also annotated five
additional languages to use as test data:

1. Java
2. R
3. SQL
4. Git
5. Linux

In terms of sampling approach, the Stack Over-
flow’s dataset consists more than 2 million posts.
We initially chose to use view count as the weight
for generating weighted Python samples from the
raw data dump to filter out low quality question
posts. However, after we finished annotating the
weighted sample of size 450, we found that the
posts with relatively high view counts tend to have
a large proportion of ”B”s. In order to obtain a
more balanced dataset, we then generated an un-
weighted Python sample of size 1,500. The sam-
ples of size 500 for the other five programming lan-
guages were also generated using the unweighted
approach to secure a relatively balanced result.

Figure 3: Illustration of our QA task

5 Model

This section provides an overview of the SLQA
model and explains the variants of the model.

5.1 Intuition
Assuming that a post has the following structure:
{Q, T1, C1, T2, C2, ..., TN, CN}, where Q repre-
sents the question title, Ti represents text blocks in
the accepted answer, and Ci represents code blocks
in the accepted answer. Our task is to automati-



Figure 4: Three variants of SLQA

cally assign an IOB label to each code block. In
this study, we worked on what is left blank in the
StaQC study and modeled the sequence of code
blocks simultaneously to take advantage of the en-
tire text and code information contained in the an-
swer post.

We started off by analyzing the flow of an ex-
ample answer post as shown in Figure 3. In this
post, the first text block T1 contains a single word
”given” and the second text block T2 contains a sin-
gle word ”and”, which indicate that the code blocks
C1 and C2 will likely contain merely the context
of the solution instead of the solution itself. In the
third text block T3, there are keywords ”start by”,
which suggests that C3 might contain part of the
solution. Then we notice that the last text block T4
contains the keyword ”now”, thus it is reasonable
to infer that the last code block C4 will possibly
contain the second half of the solution. Therefore,
even without looking at the actual code, we should
be able to guess that ”OOBI” are likely to be the
correct IOB labels for this specific answer post.

5.2 Variants of SLQA

In this study, we propose three input-level variants
of the SLQA model: SLQA-text, SLQA-code, and
SLQA-text-code. The intuition of inferring IOB
labels solely based on textual information give rise
to the SLQA-text model, which takes only text
blocks in the answer post as input, and all code

blocks are masked with the [CB] token.

6 Experiments

In this section, we discuss our experiments and
demonstrate the strength of our proposed SLQA-
text-code model.

6.1 Experiment Setup

Data. As mentioned in section 3, the datasets that
we will be using for the experiments are StaQC-
human and Lang2Code-human. The detailed statis-
tics of the two datasets are presented in Table 2.

Preprocessing. Using the vocabulary and tok-
enization methods provided by BPE, we prepro-
cessed both text and code in accepted answer as if
they are plain text.

Implementation. SLQA is constructed through
fine-tuning RoBERTa-large. We applied early stop-
ping with patience equals 5, and we designed the
batch size to be 16. Each of the three variants of
SLQA are trained and tested five times using dif-
ferent random splits of the datasets, and the final
results are obtained by averaging all five results.

Evaluation Metrics. To evaluate and compare
different models, we adopted precision, recall, F1,
and Exact Match as our evaluation metrics, which
are defined in Nakayama (2018).



6.2 Baselines

6.2.1 Bi-View Hierarchical Neural Network
Bi-View Hierarchical Neural Network (BiV-HNN)
is a bidirectional Gated Recurrent Unit (Bi-GRU)
based binary classification model proposed in the
StaQC study, which takes as input the bidirectional
GRU-based RNN encoded vectors, including ques-
tion title, standalone code block, and text blocks
surrounding the code block, and outputs a binary
prediction of whether the code block is a solution
to the question title.

Since we reorganized the original StaQC-human
dataset at post level, we needed to train the BiV-
HNN model again with the newly split training, val-
idation, and test sets. For consistency, we adopted
the same hyperparameters and retained the original
tokenization and code normalization.

We were able to reproduce the BiV-HNN model
on both Python and SQL data, and the results are
summarized in Table 3. However, since the original
work adopted different vocabulary, tokenization,
and code normalization methods on Python and
SQL separately, it is not possible to perform trans-
fer learning on the two languages using BiV-HNN.

6.2.2 Select-All and Select-First
The other two commonly used baselines are Select-
All and Select-First. Select-All refers to the heuris-
tic of treating all code blocks in the accepted an-
swer as standalone solutions, that is, all code blocks
are labelled as ”B”. Select-First means choosing
the first code block as the standalone solution and
ignore the rest, which is equivalent to labelling the
first code block as ”B” and the rest as ”O”.

6.3 Experiments on StaQC-human

Through the experiments on StaQC-human, there
are mainly three things we want to understand.
Firstly, we want to compare the performance of
SLQA and baseline models on StaQC-human-
Python and StaQC-human-SQL respectively. We
believe that by taking advantage of global infor-
mation, SLQA and its variants should be able to
achieve better results than the existing baselines.

Secondly, we would like to evaluate SLQA’s
ability to transfer learning across languages. In the
context of StaQC-human, this means 1) train and
validate the model on Python, and then evaluate on
SQL; and 2) train and validate the model on SQL,
and then evaluate on Python. Since we did not ap-
ply any specific code normalization and used only

the vocabulary and tokenization method provided
by BPE, it is possible to conduct transfer learning
experiments to examine whether SLQA is able to
apply the knowledge learned on one programming
language to another programming language.

Finally, we want to compare the performance of
the three variants of SLQA. For training and evalu-
ation on the same programming language, we think
SLQA-text-code has the most advantage because
the model will acquire knowledge from both the
text and the code information, and such knowledge
is directly applicable to the test set. In terms of
transfer learning, we think SLQA-code will be the
lowest because the syntax, structure, and features
of the original programming language and the new
programming language tend to be very different,
which is a big challenge for the model. The best
performer should be SLQA-text as the model only
learns textual information, which should not be
significantly different from language to language.
As for SLQA-text-code, we think it will perform
comparably to SLQA-text because it also contains
all text information.

6.4 Experiments on Lang2Code-human

Similar to the experiments we conducted on
StaQC-human, we designed our experiments on
Lang2Code-human to first evaluate the perfor-
mance of SLQA and the Select-All and Select-
First baseline models. Secondly, we performed
transfer learning from Python to the other five pro-
gramming languages to establish a transfer learning
benchmark. Finally, we would like to compare the
performance of the three variants of SLQA, our
hypothesis about their performance stays the same
for the same reasons stated in section 5.3.

7 Results

First we see from table 3 that for the experimen-
tal results on Python, SLQA’s model outperformed
BiV-HNN in each mode (Text, Code, Text+Code).
This is partly due to the fact that full-text informa-
tion can also help the model understand the data
better. The best performance is SLQA-text-code,
with an 8% improvement over BiV-HNN.

Comparing the three variants of SLQA, we
find that SLQA-text-code is the best, followed
by SLQA-text, and finally SLQA-code. Here we
see that SLQA-code performed significantly worse
than SLQA-text compared to the BiV-HNN vari-
ant where Text-HNN and Code-HNN were not too



Model Precision Recall F1 Accuracy
Select First 64.3 56.1 60 66.6
Select-All 44.6 100 61.7 44.6

Python->Python Text-HNN 71.7 79.5 75.4 76.8
Python->Python Code-HNN 71.7 77.8 74.6 76.4
Python->Python BiV-HNN 76.2 83.8 79.6 81
Python->Python SLQA-text 78.5 86 82 83
Python->Python SLQA-code 72.8 87 79.1 79.1
Python->Python SLQA-text-code 85.3 90.2 87.6 88.4
SQL->Python SLQA-text 74.6 90.1 81.6 81.9
SQL->Python SLQA-code 84.5 24.3 37.3 63.6
SQL->Python SLQA-text-code 79.5 82.3 80.9 82.3

Table 3: Experiment results evaluated on StaQC-human Python test set. Python->Python means the model is
trained and validated on Python training & validation set, and evaluated on Python test set. SQL->Python means
the model is trained and validated on SQL training & validation set, and evaluated on Python test set.

Model Precision Recall F1 Accuracy
Select First 73.7 51.3 60.5 60.6
Select-All 58.8 100 74 58.8

SQL->SQL Text-HNN 76.5 86.6 81.2 76.5
SQL->SQL Code-HNN 75.3 88.8 81.5 76.3
SQL->SQL BiV-HNN 83.2 96 89.1 86.1
SQL->SQL SLQA-text 86.3 94 90 87.7
SQL->SQL SLQA-code 84.2 89 86.5 83.5
SQL->SQL SLQA-text-code 85.2 97.7 91 88.4
Python->SQL SLQA-text 88 82.8 85.2 83.1
Python->SQL SLQA-code 77.3 80.1 78.3 74
Python->SQL SLQA-text-code 90.4 88.3 89.2 87.2

Table 4: Experiment results evaluated on StaQC-human SQL test set.



Model Precision Recall F1 Exact Match
Python Select First 62.1 41.6 49.8 55.3
Python Select All 48.5 91.4 63.4 52.6
Python->Python SLQA-text 63.9 76.6 69.7 69.2
Python->Python SLQA-code 65.1 77.5 70.6 68
Python->Python SLQA-text-code 70.2 82.3 75.7 73.5

SQL Select First 50.7 33.3 40.2 46.2
SQL Select All 50 87.6 63.7 57.1
Python->SQL SLQA-text 65.2 75.8 70 70.2
Python->SQL SLQA-code 63.1 58.1 59.8 61.2
Python->SQL SLQA-text-code 70.6 82.7 76.1 76.3

R Select First 53.2 39.3 45.2 57
R Select All 40.7 82.2 54.5 49.5
Python->R SLQA-text 56.2 74.5 64 67.3
Python->R SLQA-code 58 73.6 64.7 65.8
Python->R SLQA-text-code 58.4 77.2 66.5 67.6

Git Select First 36.5 25.7 30.2 43.1
Git Select All 30.8 61.9 41.1 49.3
Python->Git SLQA-text 53.4 57.7 55.4 64.8
Python->Git SLQA-code 46.8 49.3 48 55.9
Python->Git SLQA-text-code 58.9 58.8 58.7 67.8

Java Select First 45.3 32 37.5 49.3
Java Select All 34.1 62.7 44.1 53.6
Python->Java SLQA-text 49.3 59.2 53.8 65.2
Python->Java SLQA-code 50 50.4 50 58
Python->Java SLQA-text-code 59.4 67 62.9 71.5

Linux Select First 53.6 33.6 41.3 45.9
Linux Select All 42.9 80 55.9 53.2
Python->Linux SLQA-text 61.3 71 65.8 68.3
Python->Linux SLQA-code 62.4 60.9 61.5 58.2
Python->Linux SLQA-text-code 66.6 74 70.1 69.7

Table 5: Experiment results evaluated on Lang2Code-human test set. The test set includes the Python test set and
the other 5 coding language test set. The SLQA model is trained on Python training set and evaluated on the 6 test
set to test the transfer learning ability.



different. This is probably because the input code
of Code-HNN was normalized, so the model could
find the pattern more easily (e.g., counting the num-
ber of VARs, etc.). In contrast, in SLQA-code the
unprocessed raw code was directly input to the
model. While this made it difficult the SLQA-code
model to extract patterns, the fact that it did not
require any domain knowledge is a huge plus. The
similar pattern was observed with experiments re-
sults on SQL 4

For the transfer learning experiments of Python-
>SQL and SQL->Python, we find that SLQA-
code performed poorly, which means that it is dif-
ficult to make the model predict language A in
language B without giving the model additional
information, which is consistent with our hypoth-
esis. We also notice that the experimental results
of Python->SQL were relatively much better than
those of SQL->Python, which we believe is re-
lated to the complexity of the language, probably
the language features of Python are more complex
and some of them are well compatible with the
language features of SQL.

We also found that both SLQA-text-code and
SLQA-text perform well in transfer learning. Both
of the transfer learning results for SLQA-text-code
were even better than results for BiV-HNN which
were trained on the original langauge. This indi-
cates that SLQA-text-code has a strong ability to
reason by semantic information of text and code.

Next, we apply the SLQA variant to the
Lang2Code-human dataset. We find that SLQA-
text and SLQA-text-code perform well on top of all
test sets, especially SLQA-text-code, which on av-
erage exceeds the F1 score of heuristic baseline by
about 15%. The increase of SLQA-text-code over
the heuristic baseline on the Python dataset over
the heuristic baseline is very close to its increase in
other test sets. This indicates that SLQA achieves
similar results on test sets in other languages as
on the Python test set, which validates the strong
migration ability of SLQA-text-code across pro-
gramming languages.

8 Conclusion

Traditional approaches to constructing NL-PL pairs
had to choose between using programming lan-
guage attributes or natural language attributes. The
former required domain knowledge as well as strug-
gled to transfer learning to other languages, while
the latter did not exploit the sub-word level syn-

tactic similarity within different programming lan-
guages. We showed that SLQA, a model that incor-
porates both the programming language as well as
natural language attributes performs better than the
current state of the art. We also showed that this
kind of model can be transferred to other languages
with no re-training or domain language required.
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