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1.8
Million

PEOPLE IN THE U.S. WITH SEVERE 
HEARING LOSS

500
Thousand

USERS OF AMERICAN SIGN LANGUAGE IN 
THE U.S.

10
Thousand

TOTAL CERTIFIED AMERICAN SIGN 
LANGUAGE INTERPRETERS



Problem Statement

ASL speakers face obstacles due to the absence of 
real-time translation, leading to limited accessibility, 
reliance on interpreters, barriers in dynamic settings, 
reduced independence, and an inclusive technology 
gap.



… with less time to develop [language] from youth, 
[the deaf community] prefer ASL because their 
English is not strong.

“

”
- Jenny Buechner, 

President of the National 
Association of the Deaf



Research Objectives

1
Develop a model infrastructure for 
the translation of sentence -level 
sign language videos to English

2 Train the model to translate given sign language 
to a desired level of accuracy

3 Improve efficiency of model to potentially be applied to 
future attempts at live translation



Impact

• Impact Areas
Social Inclusion

Empowerment

• Social Impact
Social inclusion and empowerment in education, 
healthcare and everyday interactions

• Monetary Impact
ASL Interpretation market estimated at $1.2B in 2021



Target Users

• Target Users: 
Research-Focused Community
Automated ASL Translation Developers
Data Contributors

• Model shared on Hugging Face 



Data Sources

Dataset Type Vocabulary # Signers # Hours

WLASL Words 2000 119 14

MS-ASL Words 1000 22 25

# Videos

25513

21083

YouTube- 
ASL Sentences 60000 2519 984 11093



Modeling Approach



Data Processing

• Sample of YouTube-ASL used along with 
WL-ASL and MS-ASL

• OpenCV used to convert videos to Numpy arrays 
and stored with captions

• Captions cleaned - removing special characters 
and spacing

• Numpy arrays converted to Float32 for quicker 
processing
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Video Embeddings

• MoViNet: action-recognition model 
pre-trained on the Kinetics600 dataset

• Uses a series of 3D convolutions to capture 
temporal features across video frames

• Outperforms other modern action recognition 
models on Kinetics datasets
• e.g. I3D, ViVit, VATT, X3D, MobileNetV3

• Comparatively light-weight
• 3M trainable parameters vs 10-100M for other models



MoViNet: Modified Architecture

modified

• Sparse word coverage - filtered to 107 most 
frequent words

• Unfreeze 5 layers at a time, train for 2 epochs

• 48 hours of training over 9 epochs

• Validation Accuracy -

• Top-1 accuracy: 0.17

• Top-5 accuracy: 0.29



Language Model

T5: Encoder-Decoder Model
• Bypass the tokenization step and 

embedding layer in the model
• Input video embeddings as if they are 

text embeddings
• Tokenized caption is the label for 

fine-tuning



T5 Fine-Tuning

Word-Level Generation
• 25k files from WLASL and MS-ASL

• 2000 unique words

• Accuracy score:  0.56

• Average cosine similarity:  0.65
(SentenceTransformers)



T5 Fine-Tuning

Sentence-Level Generation
• Further fine-tuned the word-level 

model on complete sentences
• 20k files from Youtube-ASL
• 13k unique words

• SacreBLEU score:  1.98

• Average cosine similarity:  0.21
(SentenceTransformers)



Evaluation

Model Data Size SacreBLEU

How2Sign 45k captions 2.21 / 8.03

Google 45k captions 1.22

Google 610k captions 3.95 / 12.39

SignSense
(Ours) 20k captions 1.98



Evaluation



Key Learnings

Challenges:
● Memory & Modeling Time

● Modifying CNN architecture for custom purpose

● Modifying Transformers library to handle non-textual inputs

Technical takeaways:

● Promising architecture achieved with limited time and cost

● CNN architecture’s choice will have a large impact on inference 
speed



Demo

Link

https://huggingface.co/spaces/deanna-emery/ASL-MoViNet-T5-translator


Future Work

● Larger dataset + compute resources

● Quantization

● Lighter weight CNN architecture for faster inference

● Examine use of ASL classifiers and its effect on the model 
performance

● Compare performance across demographic groups



Conclusion

SignSense is dedicated to empowering the deaf community 
through the pursuit of an automated American Sign Language 

translation capability. 

We actively encourage the ongoing collection of ASL video data to 
advance the creation of a truly automated translation system.
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