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 Increased monitoring of criteria air pollutants in Louisiana is vital to address residents’ concerns of heightened 
 levels of industrial air pollution in the state. Recent monitoring efforts in Louisiana have largely focused on ground-level 
 sensors (US EPA, 2022). While these sensors provide literal ground-truth information, they face several limitations: they 
 are costly, fixed in place, and cannot provide comprehensive, statewide data. To fill this gap, we combine high-resolution 
 satellite data collected by the TROPOspheric Monitoring Instrument onboard the Sentinel-5 Precursor satellite (Veefkind 
 et al. 2012) with an ensemble of machine learning models (Di et al. 2020; Ghahremanloo et al. 2021; Chi et al. 2022) to 
 generate satellite-derived, 1-kilometer-squared estimates of ground-level nitrogen dioxide in Louisiana for every week 
 from 2019 to the present. Using this data, we show the disparate impact of air pollution among demographic groups in the 
 state and develop a simple algorithm that can be used to identify areas that should be prioritized for the placement of 
 ground-level sensors. 

 1. Introduction and Background Work 
 Residents of Louisiana have raised concerns for decades about high levels of air pollution that are believed to be linked to 
 heightened cancer levels and other health risks (Baurick 2019). Of particular concern is “Cancer Alley”–an 85-mile 
 stretch of land in Louisiana along the Mississippi river that contains over 150 industrial plants and is named for having 
 cancer rates nearly 47 times the national average (Naugra 2021; Parker 2023). 

 Some research has been conducted in the area to begin to understand patterns of air pollution and investigate the link 
 between industrialization, pollution, and health risks. The United Network for Human Rights used statistical methods to 
 show the improbability of the current cancer rates around Denka’s neoprene manufacturing facility in St. John’s Parish, 
 and that these cancer rates were correlated with proximity to the plant (University Network for Human Rights 2019). 
 Terrell and Julien (2022) identified a correlation between cancer, race, and air pollution in Louisiana, providing the first 
 evidence that air pollution may be a key factor contributing to the inequitable health outcomes in the state. 

 However, a lot still remains unknown about air pollution and its impact in Louisiana, in part due to a lack of adequate data 
 (Kofman 2022). For monitoring air pollutants, the Louisiana Department of Environmental Quality (LDEQ) releases data 
 on 29 air monitoring sites for ozone, sulfur dioxide, and PM2.5 (  https://airquality.deq.louisiana.gov/  ),  and only 9 sites for 
 monitoring nitrogen dioxide (NO  2  ) (  https://www.epa.gov/aqs  ).  Residents have also raised concerns about the location of 
 these sensors, with some advocating–thus far unsuccessfully–for fence line air quality monitoring around industrial plants 
 (Sullivan 2023). To address the lack of data, the EPA recently funded over 2 million dollars worth of air quality 
 monitoring projects in the state (US EPA, 2022). Yet increased ground monitoring is only part of the solution, since these 
 sensors are costly, fixed in place, and cannot provide the high resolution maps of air pollution necessary to understand the 
 impact of air pollution across the state–particularly for pollutants like nitrogen dioxide  that can vary significantly across 
 space and time (Niepsch et al. 2021). 

 To fill the gaps left by ground monitoring stations, prior research has used models to generate high resolution estimates of 
 NO  2  pollution. These models generally utilize remote  sensing estimates of tropospheric concentrations of NO  2  , along with 
 ground sensing data and additional variables, to predict ground-level concentrations. The current existing global and 
 national NO  2  datasets predominantly use data from  the Ozone Measurement Instrument (OMI) on the Aura satellite, and 
 apply various methodologies for modeling. For example, Anenberg et al. (2022) rescaled a land use regression model to 
 develop a dataset of annual 1 km  2  resolution NO  2  predictions  from 1990-2019 to test for a relationship between pollution 
 and pediatric asthma. Alternatively, Kim et al. (2020) used integrated empirical geographic regression models to develop 
 annual predictions of all critical air pollutants by census block from 1979 to 2015. Di et al. (2020) innovated on these 
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 methods by using an ensemble of machine learning models on top of chemical transport models, generating 1km  2  daily 
 NO  2  estimates. While these datasets have contributed  significantly to research on NO  2  pollution, they  have limitations, 
 including only being available up to 2019, and, with the exception of Di et al (2020)., only publishing annual predictions. 

 Additionally, the current global and national NO  2  datasets all rely on data from OMI, a satellite that has been in orbit for 
 nearly 20 years, and provides data at a resolution of  13 km x 25 km (Levelt et al. 2006)  . The 2018 launch  of TROPOspheric 
 Monitoring Instrument (TROPOMI) onboard Sentinel-5 Precursor satellite (Copernicus Sentinel-5p, 2021), which collects 
 NO  2  tropospheric column density data at a resolution  of 3.5 km x 5.5 km, provides an exciting opportunity for 
 improvement on air pollution estimation. In addition to the higher resolution, tropospheric column densities from 
 TROPOMI have a much higher correlation with ground sensor measurements than OMI measurements (R=0.67 for 
 TROPOMI compared to R=0.35 for OMI) (Griffin et al. 2019). In practice, the Atmospheric Composition Analysis Group 
 updated their NO  2  predictions for one year using TROPOMI  satellite data from 2018-2019, and found that this change 
 significantly increased the correlation and lowered the bias in their model (Cooper et al. 2020), supporting the hypothesis 
 the incorporation of TROPOMI satellite data in models can provide more accurate ground-level estimates. 

 Recent regional studies across various locations that utilize TROPOMI data, and machine learning methods, have been 
 successful in generating high accuracy and high spatial and temporal resolution ground-level predictions (Chen et al. 
 2019; Chi et al. 2022; Chan et al. 2021; Scheibenreif et al. 2022). Machine Learning models can combine the advantages 
 of satellite data, in situ observations, and statistical models (Kerr et al. 2023). Given that global and national models for 
 air pollutant estimates often have a lot of variation in accuracy between regions (Anenberg et al. 2022; Hu et al. 2014; Di 
 et al. 2022), these regional models can also be helpful in generating higher accuracy predictions for a specific location of 
 interest. Ghahremanloo et al. (2021) applied this machine learning methodology  in Texas with a relatively limited number 
 of ground sensors compared to other papers and got accurate results. Considering the geographic and climatic similarities 
 between Texas and Louisiana, these results suggest the viability of applying similar methods to Louisiana. 

 The goal of this study is to apply innovative machine learning techniques, using data from the TROPOMI satellite, to 
 develop a dataset of up-to-date, high resolution estimates of NO  2  in Louisiana that can be updated and maintained  for 
 future research. We chose NO  2  as the focus pollutant  for this research given the limited existing monitoring capacity in 
 Louisiana, the high cost of increased monitoring, the connection to industrialization, and the high spatial variability of the 
 pollutant which makes it easier to estimate disparities and determine the impact of point source emissions (Wang et al. 
 2023). This methodology could easily be adapted to develop estimates of other pollutants measured by TROPOMI, 
 including ozone and sulfur dioxide. 

 Upon deriving this dataset, we aim to provide a preliminary analysis of the impact of nitrogen dioxide pollution  in the 
 state. We analyze the data for temporal and seasonal patterns in an effort to determine the time of year and locations where 
 people may be most at risk. We then analyze the data for regional disparities in NO  2  exposure, using census  block racial 
 demographic data from 2020. Finally, we propose how this dataset could be used to identify locations for future 
 ground-level monitors. 

 Our research contributes to current literature by providing the most up-to-date estimates for regional NO  2  in the state with 
 accuracy comparable to state-of-the-art models. Additionally, we demonstrate regional disparities in pollution exposure at 
 the block-level for the state, and provide an algorithm for sensor placement prioritization. 

 2. Study Area and Data Sources 
 2.1 Study Area 
 Due to limited NO  2  sensors in Louisiana, we selected  a bounding box that included all sensors in east and central Texas. 
 Two sensors in west Texas were excluded from the bounding box due to distance as well as differences in elevation and 
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 climate from Louisiana. The approximate final bounding box stretched from -88.2° to -98.8° longitude and  28.7° to 33.3° 
 latitude. Figure 1 shows the region incorporated in this study, with the points representing locations of ground-level 
 monitors. 

 Figure 1: Bounding box of area incorporated in model training. Points represent the locations of all 
 EPA ground-level NO  2  monitors. 

 2.2 Data Sources 
 Dta was collected for the timeframe of January 6, 2019 to October 1, 2023. While satellite data was available starting in 
 April 2018, the mobility dataset selected as a feature variable was only available beginning in 2019, and therefore, earlier 
 weeks were removed from the dataset. 

 As feature variables for the model, we collected weekly averaged TROPOMI NO  2  Tropospheric Vertical Column  Density 
 (TVCD), vegetation and land use, meteorological variables, and various anthropogenic variables. The target variable for 
 the model was NO  2  ground sensor measurements. 

 Weekly averages were collected instead of daily images due to the amount of missing data in daily TROPOMI satellite 
 images from cloud cover and low quality assurance. Additionally, previous research using machine learning with 
 TROPOMI NO  2  TVCD to predict ground-level measurements  has shown higher correlation when using weekly averages 
 (Grzybowski et al. 2023). While selecting weeks instead of days removes the ability to observe daily trends within a week, 
 we were still able to capture seasonal variation observed in other studies (Beirle et al. 2003; Roberts–Semple et al. 2012; 
 Meena and Jadhav 2007). Due to the limited number of sensors in the area of interest, monthly averages would not have 
 generated sufficient data for training a machine learning model. 

 2.2.1 Tropomi Satellite Data 

 The TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel 5-precursor satellite provides the highest 
 resolution and most accurate estimates of tropospheric NO  2  column density currently available (Copernicus  Sentinel-5p 
 2021). The Sentinel-5p satellite has a revisit period of less than one day, providing daily images with a spatial resolution 
 of 5.5 km x 3.5 km. The 2022 Reprocessed version of the L2 NO  2  products were selected for this study,  as recommended 
 for time series analyses in the Sentinel-5 precursor/TROPOMI Level 2 Product User Manual (Eskes et al. 2022). 

 The swath images were collected from Amazon Open Datasets (  https://registry.opendata.aws/sentinel5p  ) and processed 
 using the HARP package from Copernicus’s Atmospheric Toolbox (Niemeijer 2017). With HARP, the images were 
 averaged by week, filtered to include only pixels with quality assurance values over 0.75 (as recommended in the product 
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 user manual to remove cloud-covered scenes and problematic retrievals; Eskes et al. 2022), and regridded to a spatial 
 resolution of 0.01°. 

 Due to removing pixels with low quality assurance, some weekly averaged images contained missing pixels. Appendix 1 
 shows the breakdown of missing pixels by week. Images with greater than 40% of pixels missing were removed from the 
 dataset, which resulted in the removal of two weeks: the week of 2/3/19 and 2/24/19. Prior studies have used various 
 inpainting methods to fill in missing pixels (Wang et al. 2021; Sarafanov et al. 2020). In this study, biharmonic inpainting 
 was used on the remainder of images to fill in missing pixels (Hudagi et al. 2022). To ensure the accuracy of this 
 inpainting method, we conducted simulated experiments, similar to those used in related studies (Wang et al. 2021). First, 
 we created masks of null values for the images that contained missing pixels. Since there were 95 images that had no 
 missing pixels, we randomly selected 95 of these masks, matched each mask to a full coverage image, and removed pixels 
 where those masks were located. We then implemented biharmonic inpainted to fill in the missing values, and compared 
 the in-painted values to the values in the ground truth image. The Pearson correlation between ground truth and in-painted 
 values for all images was 0.91. Appendix 2 shows examples of images from the masking experiments. 

 2.2.2 Vegetation and Land Use 

 NO  2  concentrations have been shown to vary with land  use and vegetation (Grundstrom and Pleijel 2014). In order to 
 account for these effects, Enhanced Vegetation Index and Land Use data were collected. 

 Enhanced Vegetation Index was collected from the MODIS instrument on the TERRA satellite. Enhanced Vegetation 
 Index is similar to the commonly used metric Normalized Difference Vegetation Index (NDVI), but has additional 
 adaptations to correct for atmospheric conditions. These differences can make it more sensitive in areas with dense 
 vegetation (Huete et al. 2016). The MOD13A1 product was accessed from Planetary Computer (Microsoft Open Source 
 2022  )  , and contains 16-day swaths at a resolution  of 500m x 500m. The swaths were mosaiced by month using the 
 stackstac python package (Joseph 2023). The images were then regridded from 500m x 500m to 0.01°x0.01° using 
 bilinear interpolation to match the satellite coordinates. 

 National Land Cover Database (NLCD) Land Cover data for 2019 was accessed using the Pygeohydro python package 
 (Chegini et al. 2022). This data was regridded to match the satellite coordinates (0.01° x 0.01°) using nearest neighbor 
 interpolation. The land cover data contained 18 micro categories, 13 of which were represented in the training data. Due to 
 the large number of categories compared to the small number of sensors, this data was left out of the model training but 
 used to stratify the sensor split, as described in the modeling section. 

 2.2.3 Meteorological Data and Elevation 

 Prior research has also incorporated numerous meteorological variables that could impact the relationship between 
 tropospheric NO  2  and ground-level NO  2  . Due to the  similarity of regions and methodology in the study, we collected the 
 same meteorological variables used by Ghahremanloo et al. (2021). These variables included temperature (K), surface 
 humidity (kg/kg), surface pressure (Pa), U and V wind (10 meters above ground, m/s), downward shortwave radiation flux 
 (W/m^2), downward longwave radiation flux (W/m^2), fraction of total precipitation that is convective (unitless), 
 convective available potential energy (J/kg), surface potential evaporation (kg/m^2), and surface precipitation hourly total 
 (kg/m^2). This data was collected from the North American Land Data Assimilation System (NLDAS) -2 Forcing Dataset 
 (  https://ldas.gsfc.nasa.gov/nldas/v2/forcing  )  .  All  NLDAS data is presented hourly in a 0.125° x 0.125° grid. We 
 aggregated the hourly data to weekly averages from Sunday midnight to Sunday midnight, local time. 

 Elevation data was collected from the Climatology Lab at University of California Merced 
 (  https://www.climatologylab.org/gridmet.html  ). Elevation  data was a static 4km x 4 km grid formulated to be on the same 
 meteorological grid as the weather model produced by the Climatology Lab  (GRIDMET). Since the data was static, it 
 was expanded over time to line up with the other features of our dataset. 
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 All meteorological and elevation data was regridded to match the satellite coordinates (0.01° x 0.01°) using bilinear 
 interpolation. 

 2.2.4 Anthropogenic Variables 

 We selected various anthropogenic variables to incorporate into the model. As used in similar research, we included 
 impervious surface measurements, population density, and road density (Grzybowski et al. 2023; Chi et al. 2022; 
 Ghahremanloo et al. 2021).  Due to the impact of COVID-19  on air pollution (Berman and Ebisu 2020), we also chose to 
 incorporate mobility data by county so the model could learn patterns that may have arisen from localized stay-at-home 
 orders and decreased mobility due to the pandemic. 

 Impervious Surface data for 2019 was also accessed from NLCD. Impervious surface is a measurement of how developed 
 an area is, giving the percentage of developed impervious surface for each 30m x 30m land use pixel (Multi-Resolution 
 Land Characteristics Consortium). This data was gathered at a 1km x 1km resolution. Population density data was 
 collected from Global Human Settlement Layers (GHSL) which provides gridded population density at 30 arcsecond 
 resolution (approximately 0.008° x 0.008°) (Schiavina et al. 2023). We collected road density from the Global Roads 
 Inventory Project (Meijer et al., 2018) at a spatial resolution of 8 km  2  . Impervious surface, population  density, and road 
 density were regridded using bilinear interpolation to match the satellite coordinates (0.01° x 0.01°). 

 Mobility data was collected from the Bureau of Transportation statistics, which records the number of trips taken by 
 county, aggregated by week (Bureau of Transportation Statistics 2021). In order to reduce correlation between number of 
 trips and population density, the percentage of people who took trips was calculated by dividing the recorded number of 
 people who did not stay at home by the sum of the recorded number or people who did and did not stay home. We plotted 
 this data over time to see if this calculated value was showing trends from COVID-19, and the results show an expected 
 dip during peak pandemic months (see appendix 3). Mobility data was joined to gridded data by joining satellite 
 coordinates that fell within the given county boundary based on the U.S. Census Tiger Shapefiles (U.S. Census Bureau 
 2021). 

 2.2.5 Ground Sensor Measurements 

 Ground-level NO  2  measurements were collected from  the United States Environmental Protection Agency's Air Quality 
 System (AQS) API, which provides access to validated data from thousands of sensors around the country maintained by 
 state and federal agencies (  https://www.epa.gov/outdoor-air-quality-data/  )  .  We chose to utilize this data over the more 
 frequently updated AirNow API, also maintained by the EPA, because the AirNow data is not fully validated and thus 
 “cannot be used to formulate or support regulation, guidance or any other Agency decision or position” (US EPA). 
 Additionally, the AQS data was only a few months behind the AirNow data at the time of data extraction, so there was 
 minimal impact on the recency of our results. Using the AQS API, we pulled daily mean NO  2  values in parts  per billion 
 (ppb) for the 59 sensors within the study area bounding box between the start of 2019 and the 3  rd  quarter  of 2023. Next, 
 we dropped any values marked as invalid, as indicated by a validity indicator of “N”. Finally, we aggregated the values for 
 each sensor on a weekly basis using the arithmetic mean of the daily measurements in order to match our other data. 

 3. Methodology 
 3.1 Data Pre-Processing and Train/Test Split 
 As described above, all feature data sources were re-gridded using bilinear interpolation to match the satellite data 
 coordinates with a resolution of 0.01° x 0.01°. The data was then cropped to exclude data points outside of the boundaries 
 of Louisiana and Texas. Null values for weather data and mobility data were dropped, as these points fell along the coast 
 or over water. 
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 The feature variables were then joined to the ground sensor measurements using inverse distance weighting (IDW), as has 
 been used in similar studies (Yu and Liu 2021). Rather than linking sensors to the nearest satellite coordinate, IDW weighs 
 the nearest coordinates by distance, to better take into account sensors that may be between two centroids. 

 Once the data was joined, the correlation between sensor and satellite data was plotted (see appendix 4). The overall 
 correlation (pearson correlation coefficient=0.60) was the same as has been found in similar studies (Yu and Liu 2021) 
 and close to the overall reported correlation for TROPOMI (Griffin et al. 2019). When plotting the correlation by sensor, 
 we noticed two outlier sensors from Louisiana that had a lower correlation with satellite values. We chose to drop these 
 two sensors from the dataset until we had further information, in case these sensors were picking up hyper-local variation, 
 or other noise that would not be beneficial for training a model to generate ~1km x 1km predictions (see Appendix 5). The 
 final dataset for modeling contained 12,387 rows with ground sensor values. Appendix 6 contains a diagram of the data 
 processing pipeline. 

 To ensure that we could measure how well our model performed on unseen sensors, we held out a test set containing 6 
 sensors. To select these sensors, we stratified the data into “developed” and “undeveloped” areas based on the NLCD 
 2019 land cover data. To formulate the stratified grouping, we split the total number of sensors into 90% for training, and 
 10% for test. We maintain the overall ratio of developed to undeveloped sensors over each set. This stratification ensures 
 that both the test and training set had a mix of urban and rural sensors since prior research has suggested these models 
 may perform better in urban areas given the higher density of sensors (Ghahremanloo et al. 2021). While similar studies 
 have exclusively relied on cross-validation using data from all sensors, we choose to hold out a test set to ensure we have 
 a subset of the data that is not being used during hyperparameter tuning to give a metric of how the model will perform on 
 unseen locations.  Holding out 10% of the data for  a test set resulted in a training set of 11,055 rows and 51 sensors, and a 
 test set of 1,332 rows and 6 sensors. 

 3.2 Feature Engineering 
 Additional features were added or transformed prior to modeling in order to improve the performance of the model. In 
 order to incorporate spatial relationships, a 19 x 19 pixel (~21 km  2  ) average of the satellite data  was calculated around 
 each center location. To reduce autocorrelation with the point location satellite value, the point satellite value was 
 subtracted from this average, and the difference between the point and surrounding pixel was included. Similarly, 
 temporally lagged satellite values were included to account for temporal relationships in the data. The prior week satellite 
 value was subtracted from the current week satellite value to reduce autocorrelation. The time variable was also 
 transformed into one-hot encodings for the month and year in order to account for seasonal and annual variation without 
 learning patterns for a specific date. 

 UWind and VWind were transformed into wind direction and magnitude using the following equation: 

 Finally, All features were scaled using scikit-learn’s Robust Scaler to account for outlier values (Pedregosa et al. 2011). 
 Robust Scaler works by centering the data around the median value rather than the mean, making it less sensitive to 
 outliers. After centering the data around the median, the algorithm will divide it by the interquartile range (between the 
 75th and 25th percentiles). A Robust Scaler is also less sensitive to feature distribution than a Standard Scaler, which 
 assumes a Gaussian distribution. Scaling the features is necessary to account for differences in units between features and 
 consistent learning in the gradient-based algorithms. The formula describing robust scaling for a given feature X is 
 detailed below. 
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 3.3 Machine-Learning Modeling 
 For estimating ground-level pollution, we test four machine-learning models: a Feed-Forward Neural Network, XGBoost, 
 a 1-Dimensional Convolutional Neural Network (1DCNN), and TabNet. Ordinary Least Squares (OLS) regression was 
 used as a baseline for comparison. The sections below describe each of these individual models in further detail. 

 Each model was trained by minimizing Root Mean Square Error (RMSE) using 10-fold spatial cross-validation on the 
 training set. To implement this approach, all sensors were split into ten non-overlapping groups using stratified random 
 sampling by land use, as was done with the test set. For each fold, we trained the models on 90% of the sensors and 
 evaluated the performance on the validation set consisting of 10% of sensors not seen during training. This spatial 
 cross-validation methodology aligns well with our purpose of estimating pollution for locations without sensors. In 
 contrast, other methodologies, such as standard or temporal cross-validation, could artificially inflate results due to data 
 leakage. 

 For evaluation, we compare the estimated surface NO2 concentrations from all 10 folds to the observed concentrations, 
 calculating the RMSE as well as MSE-based out of sample R2 for comparisons with existing literature. Out of sample R2 
 provides a measure of fit to the 1-1 line as opposed to squaring the correlation coefficient which tends to be typically 
 higher (Keller at al. 2014). 

 For each individual model, we use hyperparameter search using Optuna (Akiba et al. 2019) to select the optimal 
 hyper-parameters for each model. The models were tuned to minimize the cross-validated RMSE. The sections below 
 indicate the specific hyperparameters for each model selected with this methodology. 

 3.3.1 Baseline Models 

 Each model utilized the same set of features described in the section above. We utilized OLS for a baseline model. OLS 
 regression models capture linear relationships between an independent variable, ground sensor NO  2  ,  and  a series of 
 dependent variables. OLS regression is fit by solving for the set of coefficients that minimize the sum of squared residuals. 
 The formula, with beta representing the resulting vector of coefficients, is described below. 

 We chose OLS regression as a baseline model because of the simplicity of implementing a closed-form solution. 
 However, unlike our final deep learning techniques, OLS regression cannot model non-linear relationships between 
 independent and dependent variables without variable transformation. We describe the model below, with each beta 
 representing a vector of coefficients by category. A full detailed table of results can be found in appendix 7. 
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 3.3.2 Feed-Forward Neural Network 

 A feed-forward neural network model (FFNN) is a multilayered model consisting of interconnected nodes (units) with 
 associated weights and biases. The FFNN uses backpropagation and gradient loss to minimize a specified loss function 
 (gradient descent). Our model is optimized to minimize the RMSE of the predicted NO  2  values versus the ground truth 
 sensors. The models consist of an input layer (m rows in data by n features), hidden layers, and an output layer of various 
 sizes that all pass through the weights and biases to activation functions. Through activation functions and hidden layers, 
 the FFNN can pick up nonlinear and complex relationships that OLS regression will miss (van Hemmen 1988). Additional 
 hyperparameters that are associated with an FFNN are epochs (passes through the training set for optimization), learning 
 rate (step size of the gradient descent process), dropout rate (a regularization to randomly drop units at a rate p), and 
 optimizer (algorithm describing the process to adjust weights and biases). Through Optuna experiments, we used OLS 
 regression to observe the hyperparameters and model structure associated with the lowest spatial cross-validation RMSE. 
 We experimented with different numbers of units, hidden layers, learning rates, activation functions, optimizers,  and 
 dropout rates. After observing the experiments' results, we fit a complex model (many layers) and a simple model (a 
 single hidden layer) with a single-unit regression output layer. When testing for generalizability, the simpler model 
 performed better on spatial cross-validation (see appendix 8 for a table of all hyperparameters for the final model). 

 3.3.31-Dimensional Convolutional Neural Network 

 The 1-Dimensional Convolutional Neural Network (1DCNN) relies on the same properties of FFNN to minimize a 
 specified loss function and set associated weights and biases. The primary difference between the 1DCNN and the FFNN 
 is the addition of convolutional layers that process sequences of features (Kiranyaz et al. 2021). We hypothesized that this 
 network architecture could pick up local spatial relationships that the FFNN could not capture. Due to the convolution 
 layer, we adjust the input to the network from an m by n matrix to m 1-dimensional vectors containing data representing 
 each of our features. After the convolutional layer, we utilize a max pooling and flattening layer to reduce the dimensions 
 of our model. Once we reduce the model's dimensions, we pass the output to hidden and output layers similar to the 
 FFNN. When experimenting with the optimal hyperparameters for the 1DCNN, we used the same OLS covariates as the 
 FFNN but with additional variables of the number of convolutions (filters) and the size of the convolutions (kernel size). 
 Like with the FFNN, we experimented with simpler and more complex architectures. In this case, we found no difference 
 in results between the two structures and utilized the smaller model for simplicity. See appendix 8 for a table of all 
 hyperparameters for the final model. 

 3.3.4 XGBoost 

 XGBoost is an ensemble learning method which combines the predictive power of multiple learners. In this algorithm, 
 decision trees are built sequentially such that each subsequent tree aims to reduce the pseudo-residual errors of the 
 previous tree. This is in contrast to bagging techniques such as Random Forest where each tree predicts a subsample of 
 bootstrapped data. To find the optimal system parameters, we use Optuna, focusing on the number of estimators (or trees), 
 max depth of each tree, minimum child weight to split a node and the learning rate which controls how quickly the 
 predictions are updated after each weak learner. In order to improve generalization, we also sample data by columns and 
 rows for each tree, include regularization parameters to prune the trees (lambda, gamma and alpha), and apply early 
 stopping after 20 trees without improvement in RMSE (see appendix 8 for a table of all hyperparameters for the final 
 model). 

 3.3.5 TabNet 

 TabNet is a deep learning encoder-decoder algorithm developed by Google for tabular data (Arik and Pfister 2020). The 
 algorithm combines the features of neural networks to fit complex functions and the feature selection benefits of decision 
 trees (see appendix 9 for a diagram of the model architecture). One unique difference is that TabNet uses a sequential 
 attention mechanism in order to select the most appropriate model features at each step in the model while decision-trees 
 only do feature-selection globally. We also use Optuna to find the best hyperparameters in cross-validation focusing on 
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 key parameters such as the dimensions of the prediction and attention layer (n_a and n_d), the type of mask applied when 
 projecting results, the number of successive steps in the network, and the number of independent GLU layer in each GLU 
 block (n_shared). In our model we use Adam optimizer with a learning rate of 0.02 applying weight_decay and a learning 
 rate scheduler as well as patience of 20 (see appendix 8 for a table of all hyperparameters for the final model). 

 3.3.6 Ensemble Averaging 

 Prior research has demonstrated that ensemble averaging can improve the performance of the individual models (Di et al. 
 2020). After the tuned models were generated, we ran experiments with unweighted ensemble model averages to 
 determine the best combination of models. The best model was chosen using cross-validated RMSE, and then this model 
 was evaluated on the test set. 

 4. Modeling Results and Discussion 
 Table 1 details the accuracy of each model architecture and the top-performing ensemble model. Of the individual model 
 types, XGBoost performed the best in RMSE and R  2  values.  However, when experimenting across equally weighted 
 combinations of XGBoost and other deep learning techniques, ensembles outperformed the individual models. Ensembles 
 of XGBoost and deep learning techniques exceeding other deep learning techniques on tabular data is consistent with 
 previous research (Shwartz-ziv and Armon 2022). 

 Table 1: Results of all models and ensembles on cross-validation R  2  and RMSE. “Difference from Baseline” is the difference  between the metrics 
 for the model and the OLS regression baseline model. The model in bold (XGBoost + TabNet +1 Layer FFNN) is the model that was selected for 
 inference. 

 Based on performance across the spatial cross-validation, we selected the equally weighted combination of XGBoost, 
 TabNet, and the Simple FFNN as the final model. We evaluated the final model on the held-out stratified test set to 
 understand the generalizability of our model. When applied to the test set, the ensemble model R  2  value of .70 and an 
 RMSE of 2.04. 
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 Figure 2: Plot of predicted and actual values for the test set, colored by sensor. The black 
 line represents the 1:1 line, which would indicate points whose estimated values match 
 the predicted values. 

 To further understand the generalizability of our model, we examined the distribution of the residuals across each fold of 
 the spatial cross-validation and the test set. While the distribution of residuals was consistent across most sensors, there 
 were some sensors with a wider distribution. The sensors with the wider distribution of residuals tended to coincide with 
 extreme data point sensors (very high or low values). The performance of these sensors highlights the need for increased 
 training data in the models and additional ground sensors to calibrate accuracy. We also examined the distribution of 
 residuals across time. Our model performed consistently across time, even accounting for the pandemic year with different 
 ground truth dynamics. A chart of residual distribution in the test set by sensor and time is available in appendix 10. 

 4.2 Measures of Uncertainty 
 To measure the uncertainty of our predictions, we utilized a bootstrapping technique with the predictions from the test set 
 by randomly sampling with replacement rows of features from the test set and predicting ground truth value. The residual 
 values were recorded and stored for each pass through the test set. After many iterations, we calculated a 95% confidence 
 interval around the results. Table 2 contains the results of our bootstrap analysis, bucketed in 20th percentile increments of 
 ground truth values to understand better how our model performs with various sensor values (see appendix 11 for graph of 
 bounds). As you can see, the model tends to overpredict for lower sensor values and underpredict for higher values with 
 much wider confidence intervals. These results again highlight the need for additional sensor readings for model 
 improvement. 

 Table 2: To calculate the above table, we randomly sample with replacement from the test set and 
 an equivalent number of rows to the test set, predict each datapoint, compare to the ground truth 
 value, store the residual values, and repeat the process 10,000 times. We then separate the results 
 based on 20th percentile buckets of the ground truth values and calculate a 95% confidence 
 interval for each bucket. The column “Ground Truth Bucket” represents the range of each 
 percentile bucket, the “Lower Bound” and “Upper Bound” represent the end of the 95% 
 confidence interval, and the “Average Value” is the mean residual value. 
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 4.3 Experiments 
 We conducted  a number of experiments to determine the potential effect of our data pre-processing decisions. Overall, all 
 experiments had a negligible effect on evaluation metrics. For example, in order to test the impact of inpainting satellite 
 images we trained our models using non-inpainted data achieving very similar metrics. In order to account for the 
 presence of outliers across many features, particularly satellite and meteorological variables, we tested clipping values 
 based on different standard deviations from the mean of each variable (both with inpainted and non-inpainted data). 
 Lastly, model results were also not affected by our decision to stratify sensor cross validation as well as our validation and 
 tests sets by land use. 

 5. Analysis and Applications 
 After selecting the best ensemble model, we used this model to predict weekly NO  2  values for the state  of Louisiana from 
 January 2019 through October 2023. Using this inference dataset, we conduct a preliminary analysis on spatial and 
 temporal patterns of nitrogen dioxide pollution, as well as an analysis on disparate impacts for various demographic 
 groups. Lastly, we develop a simple, linear weighting algorithm that could be used to determine the placement of future 
 sensors. 

 For some sections of this analysis, we rely on monthly or annual averages. Monthly averages are calculated by assigning 
 weekly values to each day in the week, then averaging by month. We note that there are three temporal gaps in the weeks 
 that could impact some monthly values: the first 5 days of January 2019 as well as the weeks that were removed due to 
 missing pixels: 2/3/19 and 2/24/19. Annual averages are calculated by averaging the monthly values. 2023 annual 
 averages are not reported since the dataset does not span the full year. 

 5.1 Spatial and Temporal Patterns in Regional NO  2  Pollution 
 Figure 3 shows the annual average concentrations of nitrogen dioxide for 2019- 2022 in Louisiana. NO  2  values appeared 
 to be heightened around population dense areas such as New Orleans, Baton Rouge, Lake Charles, and Shrevport. 

 Annual Average NO  2  in Louisiana from 2019 - 2022 

 Figure 3: Mean annual NO  2  for Louisiana from 2019-2022.  2023 is not included since the data does not span the entire year. 
 Estimates for annual NO  2  are averaged by month and  do not contain data before 1/6/2019 or the weeks of 2/3/19 and 2/24/19. 

 We find that nitrogen dioxide is generally higher during winter months, as has been widely documented (US EPA 2023; 
 Jarvis et al. 2010).  Figure 4 shows the monthly average  NO  2  compared to annual average NO  2  . The average NO  2 

 concentration in winter months (November - February) from 2019-2022 was 3.97 ppb, which was 32% than the average 
 concentration in the other months. 
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 Comparing Monthly and Annual NO  2  Averages in Louisiana  from 2019-2022 

 Figure 4: Monthly and annual average NO  2  for Louisiana  from 2019-2022. 2023 is not included since the data does 
 not span the entire year. Estimates for annual NO  2  are averaged by month and the graph does not contain data 
 before 1/6/2019 or the weeks of 2/3/19 and 2/24/19. 

 We also see heightened NO  2  pollution along the southern  stretch of the Mississippi river, in the area referred to as “Cancer 
 Alley.” We define cancer alley to be 10 miles on either side of the Mississippi river, stretching form a latitude of 29.57 
 to 31.08. Figure 5 shows monthly NO  2  for this region  compared to the state average. 

 Monthly NO  2  Averages in Cancer Alley compared to Overall  Louisiana Average 

 Figure 5: Monthly and annual average NO  2  for Louisiana  from 2019-2022. “Cancer Alley” is defined as 10 miles to 
 either side of the Mississippi River from a latitude of 29.57 to 31.08. Overall average is inclusive of this region. 2023 is 
 not included. Estimates for annual NO  2  are averaged  by month and the graph does not contain data before 1/6/2019 or 
 the weeks of 2/3/19 and 2/24/19. 
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 We find that NO  2  pollution is, on average, 34% higher in this region compared to the state average. This difference is at 
 least in part due to the inclusion of two major cities, Baton Rouge and New Orleans. Future research is needed to 
 investigate the link between heightened pollution in this area and industrial emissions in the area. 

 5.2 Analysis of Demographic Disparities in NO  2  Exposure 
 One of the recommended use cases for statistical models of high-resolution nitrogen dioxide estimates is disparity 
 analysis, which is particularly impactful in Louisiana given the recent EPA investigation into disparate environmental 
 impacts (Kerr et al. 2023; EPA 2023). Prior research comparing emissions between census tracts in LA has found that 
 black communities with industrial activity are exposed to 7 times higher nitrogen dioxide emissions than average 
 (Terrell et al. 2023). We expand on this research by using our high resolution NO  2  pollution dataset to estimate 
 demographic disparities in overall NO  2  pollution exposure estimated at the individual level using census block data. 

 We utilize demographic data and shapefiles from the 2020 U.S. Census. To analyze disparity, we first calculate pollution 
 at the census block centroid, as has been done in similar research (Kim et al. 2020). Since the majority of census blocks 
 are smaller than our 1 km  2  grid, we use inverse distance  weighting of the four nearest gridded estimates to estimate the 
 pollution at our centroid. We note that, because census blocks do not have consistent land area, some blocks can be 
 much larger than our gridded estimates, with the largest block having an area of 340 km  2  . We ran our analyses  with and 
 without larger blocks and did not find noticeable differences since only 15% of the population live in blocks over 2 km  2  , 
 and only 2.5% live in blocks over 10 km  2  . 

 After we calculate pollution by census block, we assign this value to all individuals by demographic group in that block. 
 We then aggregate to the desired geographic level (tract, county, or state) and calculate the overall average pollution 
 exposure as well as the average by demographic group. To calculate disparity, we calculate the percent difference 
 between the average concentration of NO  2  pollution in a demographic and the overall average concentration in the 
 region, or (C_race - C_overall) / C_overall, as has been done in prior research (Chambliss et al. 2021). For analyzing 
 within tract and county disparities, we calculate the percent difference between the exposure of black and white 
 residents in the area, since these groups are the two largest demographic groups and the primary focus of prior research 
 (Terrell et al. 2023). This metric is calculated as (C_black - C_white) / C_overall. 

 5.2.1 Disparities by Demographic Group 

 Calculating disparities across the whole state, we find that, on average, white residents are exposed to 8%  less  pollution 
 than average, and black, asian, and hispanic or latinx residents are exposed to 10-20%  more  pollution than  average. The 
 table on the below shows the percent disparity broken down by race/ethnicity. 

 Table 3: Disparities by demographic group across the state. The table shows 
 percent disparity, or (C_race - C_average)/C_average using the modeled NO  2 
 estimates from 1/2019 - 10/2023. *NH means non-hispanic or Latinx. **Other 
 includes american indian or alaskan native, native hawaiian or pacific islander, 
 other, or two or more races 
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 These disparities have been relatively consistent for the past 5 years. Figure 6 shows the percent disparity by 
 demographic group since 2019. Asian and Hispanic/Latinx populations show some seasonal variation in percent 
 disparity, but overall, there does not appear to be an increase or decrease in disparities over the past 5 years. 

 Demographic Disparities over Time in Louisiana 

 Figure 6: Percent disparity for all demographic groups over time. NH signifies non-hispanic 
 and “Other” includes american indian or alaskan native, native hawaiian or pacific 
 islander, other, or two or more races. 

 5.2.2 Within-Tract and County Disparities 

 Prior research has shown that level of spatial aggregation can be critical to accurately estimating disparities (Clark et al. 
 2022). To determine whether aggregating by tract or county may be impacting existing disparity estimates, we calculate 
 within-tract  and  within-county  disparities. In order  to have one metric that can be compared across all tracts/counties, 
 we calculate black/white disparity, which is the percentage difference in exposure of NO  2  between black and white 
 residents. 

 Table 4 shows the population-weighted average of within-tract, and within-county disparities. The average black-white 
 disparity within a tract is calculated by averaging the disparity values for all 1,382 tracts, weighing the values by the 
 total population of the tract. The same methodology is applied for the 64 counties.  The overall disparity in the state is 
 calculated using the average black and white exposure estimate for the entire state. 

 Table 4: Black-White disparities in NO  2  exposure at  different geographic levels. This disparity is calculated 
 as (C_black - C_white)/C_white. Tract/county average is calculated by taking the population-weighted 
 disparity for all tracts or counties. The within state average represents the overall black-white disparity for 
 all residents. 

 As expected, the larger the geographic area, the higher the internal disparity since this value encompasses disparity both 
 within, and between, the lower level of aggregation. All values are positive, suggesting that even within tracts or counties, 
 black residents have a disparate level of exposure. This table suggests that aggregating to the tract or county level when 
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 analyzing disparities, as has been done in prior research, could lead to underestimating disparate impacts on black 
 residents since it does not include the disparities that exist within those geographic locations. With that said, aggregations 
 by tract would underestimate disparities much less than aggregations by county. 

 Figure 7 shows the percent black-white disparity within tracts and counties, with purple representing counties where 
 black residents were exposed to higher levels of pollution, and orange representing counties where white residents are 
 exposed to higher levels of pollution. The darker colors represent larger disparities. As shown in the graphs, disparities 
 within counties are much more apparent than disparities within tracts. 

 Black-White Disparities  within Tracts  Black-White Disparities  within Counties 

 Figure 7: Map of disparities within tracts and census blocks. Counties are shaded by the percent disparity between black and 
 white residents, or (C_black - C_white)/C_white, with purple representing that the black population in an area is exposed to 
 higher levels of pollution, and orange representing that the white population in an area is exposed to higher levels of pollution. 
 White means not disparity exists. Tracts without people have been removed from the map. 

 Overall, the majority of both tracts and counties have a positive black-white disparity. For tracts, 60% of tracts had 
 positive black-white disparities, compared to 39% with negative black-white disparities, with ~1% of  tracts not 
 containing individuals in one or both demographics. For counties, 78% of counties had a positive black-white disparity, 
 and only 22% had negative disparities. Appendix 12 contains a table of the counties with the most positive, and most 
 negative disparities. Appendix 13 contains maps of race and pollution in Rapides and Plaquemines parishes: the parishes 
 with the most positive and most negative black-white disparities. These within tract and county disparities highlight the 
 need to increase the resolution of disparity analyses in Louisiana to the census block level, to ensure measurements are 
 accurately representing the magnitude of disparate impacts. 

 5.3 Sensor Placement Algorithm 
 Lastly, we design an interpretable and customizable algorithm using our NO  2  estimates that can be implemented  to help 
 inform the intentional placement of future ground-level sensors. 

 First, we determine key variables that could be considered when determining the placement of NO  2  sensors. While these 
 could be adjusted based on the priorities of a group or organization, we select mean estimated NO  2  to  identify overall 
 concentrations, 90th percentile estimated NO  2  to capture  peak values, population density to capture people impacted , and 
 Climate Vulnerability Index (CVI) (Tee Lewis et al. 2023)  by tract as a metric for “Susceptible and Vulnerable 
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 populations,” as highlighted in the EPA recommendations (EPA 2023). To ensure equal weighting of variables, we 
 normalize all values to be between 0 and 1. We then calculate a score for each 1km  2  gridded location using the following 
 linear equation, where  are the different, adjustable, weights, and the covariates are the normalized mean NO  2  , 90th     𝜷 

 𝑖 

 percentile NO  2  , population density, and CVI: 

 Next, we rank these scores from least to greatest and identify the location with the highest score. The distance between 
 this location and all existing sensors is checked, and if the location is further than the minimum difference from all 
 existing sensors, the sensor is added and the next highest score is checked. If the location is within the minimum distance, 
 the location is removed and the next highest score is checked. The graphs below demonstrate various examples of sensor 
 location recommendations using this algorithm, with existing sensors in gray and new sensors in red. Additional 
 experiments, with coordinates of new sensors, can be found in appendix 14. 

 Example 1: Changing Minimum Distance 
 20 new sensors; All weights set to 1;  Minimum distance  variable 

 Minimum distance = 5 km  Minimum distance = 10 km  Minimum distance = 20 km 

 Example 2: Changing Weights 
 20 new sensors; Minimum Distance of 10 km;  Weights  variable 

 Mean NO  2  =1  | 90th % NO  2  = 0 
 Pop Density =1  | CVI = 0 

 Mean NO  2  =1  | 90th % NO  2  = 0 
 Pop Density = 0 |  CVI = 1 

 Mean NO  2  =1 | 90th % NO  2  = 1 
 Pop Density = 0 | CVI = 0 

 Figure 8: Experiments with the sensor placement algorithm to demonstrate how different parameters or weights can determine the 
 locations of the sensors. Existing sensors are in gray, and new sensor locations determined by the algorithm are in red. The first 3 
 graphs show the impact of changing the minimum distance between sensors, and the second 3 graphs show the impact of changing 
 the weights. Latitude and longitude coordinates for these values can be found in appendix 13. 
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 The algorithm has an intentional simplicity, to ensure it can be understood, trusted, and adjusted by organizations needing 
 to place the sensors. Additional variables could be added, or removed, to highlight an organization’s priorities for sensor 
 placement. 

 6. Limitations 
 Machine learning models of air pollution can provide a unique opportunity to take advantage of the ground truth values 
 from ground-level monitoring, the complete coverage of satellite observations, and the impact of meteorological and 
 anthropogenic patterns (Kerr et al. 2023). However, they also have limitations that should be understood when considering 
 applications of the modeled estimates. First, these models are dependent on the quality and amount of sensor data 
 available. Our model struggled to learn values of specific sensors, which was likely due to localized pollution patterns 
 around the sensors. Additionally, given that most sensors are located in urban areas, the estimates may be less accurate in 
 rural areas. Incorporating additional ground-level measurements can help to reduce these issues. 

 Additionally, “black box” machine learning models can raise concerns due to a lack of interpretability. Methods such as 
 SHAP (Lundberg and Lee 2017) can help users understand how the model is weighing individual variables, yet are still 
 unable to explain exactly how the model is learning. 

 The limitations of these models highlights the need to be judicious with the application of model-derived estimates. Kerr 
 et al. (2023) suggest potential use cases for different types of pollution estimates, including satellite imagery, statistical, 
 photochemical, and in-situ measurements. Given that our model has a similar accuracy to models using statistical methods 
 (Anenberg et al. 2022), and the incorporation of satellite data, we propose use cases similar to those proposed by Kerr et 
 al. for satellite and statistical models. We suggest that these models can be beneficial for identifying long-term spatial and 
 temporal trends, analyzing disparities, locating hotspots, and identifying locations for future sensors. We recommend 
 caution when using this data to estimate source sector contributions to ambient NO  2  , particularly for estimating impacts 
 from industrial emissions in rural areas. Furthermore, the estimates from these models should not be interpreted as 
 ground-truth values for locations, as only ground-level sensors can provide that information. 

 7. Conclusion 
 Machine learning provides a unique opportunity for leveraging both high-resolution satellite imagery from Sentinel-5p 
 TROPOMI, as well as in-situ measurements, to provide full coverage ground-level estimates. Given the heightened 
 concern around health risks, and lack of adequate air monitoring, in Louisiana, this methodology can help provide 
 valuable estimates of ground-level pollution that can be used to inform policy and regulatory decisions. 

 We develop an up-to-date, accessible dataset that can be used by researchers, policymakers, and relevant stakeholders to 
 better understand spatial and temporal patterns of pollution. We then identify disparities, conducting the first regional 
 analysis of demographic disparities in NO  2  exposure  at the census block level, showing heightened exposure for black and 
 brown residents. This analysis lays the groundwork for future high resolution regional analyses of pollution disparities, 
 and can be used by policymakers to ensure that policy and regulatory decisions consider communities most impacted by 
 pollution. 

 We propose a simple, weighted algorithm that could be used for identifying high priority locations for future ground-level 
 monitoring. Given the recent funding for the expansion of monitoring in the state, this algorithm can be used to help 
 ensure that these sensors are intentionally placed. 
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 Future research is needed to identify the drivers of disparities in pollution exposure. Additionally, the incorporation of 
 modeled emissions data, as well as additional ground-level measurements as new sensors are placed, could help improve 
 the accuracy of the model. 
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 Appendix 
 Appendix 1: Missing pixels in weekly satellite images by week 

 Appendix 2: Examples of masking experiments to determine accuracy of biharmonic in-painting. The first column 
 displays the original image without missing pixels; the second column displays the masked image, masking pixels using a 
 mask from an image with missing pixel values; the third column displays the results of the in-painting. 
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 Appendix 3: Mobility data (percentage of population not staying at home) graphed by week for Louisiana and Texas. The 
 graph shows a dip during COVID shutdowns in 2020. 

 Appendix 4: Correlation between ground sensor values and satellite values for all sensor locations in the modeling set. 
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 Appendix 5: Correlation between ground sensor and satellite values for each individual sensor. The two Louisiana sensors 
 with low correlation were removed from the dataset. 

 Appendix 6: Overview of data processing pipeline. 
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 Appendix 7: Full results from baseline model (OLS) 
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 Appendix 8: Hyperparameters for Machine Learning Models, selected using Optuna Hyperparameter Search 

 Feed-Forward Neural Network  1D CNN 

 XGBoost  TabNet 
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 Appendix 9: Diagram of TabNet model architecture from the original paper 
 (Source:  https://ojs.aaai.org/index.php/AAAI/article/view/16826  ) 

 Appendix 10: Distribution of residuals in the test set separated by sensor (left) and year (right). 
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 Appendix 11: Graph of predicted vs. actual values, highlighting the upper and lower bounds of the confidence interval. 

 Appendix 12: Exposure and disparity values for black and white residents in the counties with the 5 most positive, and 5 
 most negative, black-white disparity percentages. 
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 Appendix 13: Race and Pollution in Rapides and Plaquemines Parishes, the parishes with the most positive (Rapides) and 
 most negative (Plaquemines) Black-White disparities. The maps on the left shows the estimated average NO2 pollution at 
 the census block centroid from 1/2019 - 10/2023. The maps on the right shows the percentage of black residents by census 
 block. In Rapides parish, pollution appears to be centered in areas with a high percentage of black residents, where as in 
 Plaquemines, pollution is higher in areas with lower percentages of black residents. Areas without population have been 
 removed from the map. Note that pollution scales are not consistent between maps to highlight differences within the 
 county, rather than between counties. 
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 Appendix 14: Sensor placement experiments with associate latitude and longitude values for new sensors. 
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 Example 1: Changing Minimum Distance 
 20 new sensors; All weights set to 1;  Minimum distance variable 

 Minimum distance = 5 km  Minimum distance = 10 km 

 [(30.195, -92.065), 
 (29.865, -90.085), 
 (30.405, -91.035), 
 (32.485, -93.735), 
 (30.345, -91.115), 
 (32.395, -93.805), 
 (29.965, -90.375), 
 (29.945, -89.955), 
 (30.295, -89.755), 
 (29.625, -90.745), 
 (31.305, -92.465), 
 (30.045, -89.975), 
 (30.495, -91.045), 
 (30.195, -93.195), 
 (30.585, -91.145), 
 (30.085, -90.475), 
 (30.215, -92.385), 
 (30.145, -91.965), 
 (32.515, -92.155), 
 (29.695, -91.205)] 

 (32.445, -93.805), 
 (29.955, -89.955), 
 (29.875, -90.065), 
 (29.595, -90.695), 
 (30.045, -90.695), 
 (32.525, -93.725), 
 (32.495, -92.125), 
 (29.895, -90.215), 
 (30.335, -91.155), 
 (30.175, -93.205), 
 (30.105, -90.995), 
 (29.975, -90.405), 
 (30.235, -92.045), 
 (30.275, -89.765), 
 (31.315, -92.465), 
 (30.075, -89.945), 
 (30.495, -90.475), 
 (30.195, -93.375), 
 (30.365, -91.255), 
 (29.705, -91.215) 

 Minimum distance = 15 km  Minimum distance = 20 km 

 (30.015, -90.765), 
 (30.065, -90.555), 
 (32.535, -93.805), 
 (29.965, -89.905), 
 (29.855, -90.065), 
 (32.455, -92.135), 
 (31.325, -92.425), 
 (29.925, -90.375), 
 (30.285, -91.175), 
 (29.705, -91.205), 
 (30.275, -89.775), 
 (30.485, -90.485), 
 (30.085, -93.345), 
 (29.605, -90.705), 
 (30.465, -91.015), 
 (30.235, -92.065), 
 (30.215, -92.375), 
 (29.805, -93.925), 
 (29.345, -89.385), 
 (30.095, -90.915) 

 (32.535, -93.815), 
 (30.295, -89.805), 
 (29.735, -91.205), 
 (31.285, -92.415), 
 (29.955, -90.585), 
 (30.505, -90.485), 
 (32.455, -92.125), 
 (29.835, -93.815), 
 (29.595, -90.675), 
 (30.055, -90.845), 
 (29.375, -89.415), 
 (30.055, -93.475), 
 (30.235, -92.075), 
 (29.955, -89.915), 
 (30.005, -91.835), 
 (29.355, -90.685), 
 (30.475, -90.965), 
 (29.545, -89.815), 
 (29.635, -90.165), 
 (29.785, -90.815) 
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 Example 2: Changing Weights 
 20 new sensors; Minimum Distance of 10 km;  Weights variable 

 Mean NO  2  =1  | 90th % NO  2  = 0 
 Pop Density =1  | CVI = 0 

 Mean NO  2  =1  | 90th % NO  2  = 0 
 Pop Density = 0 |  CVI = 1 

 (29.905, -90.035), 
 (29.945, -90.205), 
 (30.195, -92.065), 
 (30.465, -91.045), 
 (30.025, -90.015), 
 (30.355, -91.125), 
 (29.845, -90.115), 
 (32.455, -93.785), 
 (32.515, -93.705), 
 (29.965, -90.375), 
 (30.215, -93.195), 
 (29.855, -93.865), 
 (30.355, -90.995), 
 (30.295, -89.755), 
 (29.625, -90.745), 
 (31.305, -92.465), 
 (30.045, -90.685), 
 (30.215, -92.385), 
 (30.085, -90.475), 
 (30.145, -91.965) 

 (30.035, -89.915), 
 (29.925, -90.025), 
 (29.915, -90.165), 
 (30.055, -90.655), 
 (29.995, -90.405), 
 (30.055, -90.515), 
 (30.175, -93.325), 
 (29.935, -90.565), 
 (30.285, -91.215), 
 (32.475, -93.775), 
 (30.115, -90.945), 
 (30.265, -93.175), 
 (29.855, -93.865), 
 (29.715, -91.165), 
 (30.065, -93.325), 
 (30.215, -91.075), 
 (32.525, -92.085), 
 (30.055, -93.445), 
 (30.015, -90.785), 
 (29.595, -90.705) 

 Mean NO  2  =1 | 90th % NO  2  = 1 
 Pop Density = 0 | CVI = 0 

 Mean NO  2  =0 | 90th % NO  2  = 1 
 Pop Density = 1  |  CVI = 1 

 (29.925, -90.205), 
 (29.915, -90.065), 
 (29.855, -93.865), 
 (29.975, -89.975), 
 (32.505, -93.815), 
 (29.635, -90.125), 
 (30.475, -91.075), 
 (30.345, -91.165), 
 (30.215, -92.045), 
 (30.175, -93.325), 
 (30.045, -90.685), 
 (30.205, -93.205), 
 (29.995, -90.405), 
 (29.355, -89.385), 
 (29.945, -90.315), 
 (30.115, -91.005), 
 (30.385, -91.065), 
 (32.455, -93.715), 
 (32.525, -92.115), 
 (29.725, -91.175) 

 (29.925, -90.015), 
 (29.885, -90.115), 
 (30.025, -90.015), 
 (30.245, -92.035), 
 (30.065, -90.505), 
 (30.035, -89.905), 
 (30.095, -90.995), 
 (30.215, -93.195), 
 (30.205, -92.365), 
 (29.595, -90.705), 
 (30.465, -91.045), 
 (32.475, -93.775), 
 (29.915, -90.215), 
 (30.355, -91.125), 
 (30.285, -91.235), 
 (30.055, -90.615), 
 (30.115, -91.835), 
 (30.795, -89.855), 
 (32.455, -92.075), 
 (30.265, -91.085) 
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