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1 Abstract

Air pollution in urban environments has risen steadily in the last several decades. Such cities as Beijing and Delhi have
experienced rises to dangerous levels for citizens. As a growing and urgent public health concern, cities and environmental
agencies have been exploring methods to forecast future air pollution, hoping to enact policies and provide incentives and
services to benefit their citizenry. Much research is being conducted in environmental science to generate deterministic models
of air pollutant behavior; however, this is both complex, as the underlying molecular interactions in the atmosphere need to
be simulated, and often inaccurate. As a result, with greater computing power in the twenty-first century, using machine
learning methods for forecasting air pollution has become more popular. This paper investigates the use of the LSTM recurrent
neural network (RNN) as a framework for forecasting in the future, based on time series data of pollution and meteorological
information in Beijing. Due to the sequence dependencies associated with large-scale and longer time series datasets, RNNs,
and in particular LSTM models, are well-suited. Our results show that the LSTM framework produces equivalent accuracy
when predicting future timesteps compared to the baseline support vector regression for a single timestep. Using our LSTM
framework, we can now extend the prediction from a single timestep out to 5 to 10 hours into the future. This is promising in
the quest for forecasting urban air quality and leveraging that insight to enact beneficial policy.

2 Introduction fering free protective facial masks, and subsidizing medical
checkups for asthma and bronchitis. However, these benefits
are contingent on knowing pollution in the future. Accord-
ingly, forecasting air pollution has been a major research area
across several different fields, from environmental science to
computer science and statistics. Deterministic models in en-
vironmental science seek to understand air pollutant behav-
ior at the molecular level, simulating diffusion and dispersion
patterns based on size and type of molecule [7, 15]. In com-
puter science and statistics, linear machine learning models
have been leveraged in a more data-driven approach, specifi-
cally using multiple linear regression [9] and auto regression
moving average [2]. Nonetheless, the limitation of linearity
hinders the prediction accuracies, as much pollutant behavior
is nonlinear. As a result, support vector regressions have been
proposed [13, 12, 14]; these methods, however, have mainly
predicted current time-step pollution rather than future air pol-
lution [16]. In order to forecast future air pollution, using
longer timespan data from previous years to find patterns in
pollution would increase accuracy.

Due to rapid industrialization, the twentieth century was the
most environmentally unfriendly period of time in the his-
tory of humanity. The proliferation of nonrenewable energy
sources, such as coal, as well as the global rise of the gasoline-
powered automobile, created dangerously high levels of green-
house gas emissions. The United Nations states that today over
54% of the world’s population lives in urban areas, and it is
anticipated to increase to 66% by 2050 [8]. This increased ur-
banization has brought rising air pollution to the forefront of
public health, as such major cities as Beijing and Delhi are
presently experiencing dangerous levels of pollution. The pri-
mary air pollution metric is PMy 5, or particulate matter that
is up to 2.5 microns in diameter. These particles are small
and light, which allows them to stay in the atmosphere for
longer periods of time. Their diminutive size also allows them
to bypass the filters of the nose and throat, and thus they can
penetrate into the lungs and even the circulatory system very
quickly [18]. In fact, P Ms 5 has been associated with 4 to 8%
increases in cardiopulmonary diseases and lung cancer [3].

To tackle this rising public health concern, cities have explored
policies and services to help their citizens, such as subsidizing
the use of public transit, automobile congestion pricing, of-



3 Theoretical Background

In this paper, we propose a scheme that uses a specific RNN,
long short-term memory (LSTM), to analyze time series pollu-
tion data in Beijing. LSTMs take as inputs not only the current
input, but also what they have “perceived” previously in time,
essentially using the output at time ¢ — 1 as an input to time ¢,
along with the new input at time ¢ [5]. Given this, the network
effectively has 'memory, unlike feedforward networks. This
characteristic is important because there is often information
in the sequence itself, and not just the outputs [1]. Because
air pollution varies temporally and since health risks are due
to long-term exposures to P M5 5, it is understood that the best
predictor of future air pollution is previous air pollution over
long time periods [6, 10]. We obtained time series pollution
and meteorological data from 2015 to 2017 from Dr. Xiaojing
Yao of the Institute of Remote Sensing Applications at the Chi-
nese Academy of Sciences [11], as well as similar data from
the Beijing International Airport from 2010 to 2014, and found
LSTM RNNs to be most appropriately suited for the data.

Simple RNNs that need to find connections between the fi-
nal output and data several timesteps before are limited, since
there are many multiplications (an exponential number) that
occur within the hidden layers of the net. This creates deriva-
tives that will vanish, which makes it difficult for computers to
compute and for networks to learn [5]. For this reason, LSTMs
are a good model given the scope of the data we obtained,
since they preserve the errors in a gated cell. A simple RNN
would have had poor accuracy and major computational bot-
tlenecks, since our data have a high number of samples over
several thousand timesteps. The comparison between a simple
RNN and an LSTM RNN is shown in Figures 1 and 2, respec-
tively.
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Figure 1: From Colah blog: A simple RNN with one layer
and no gated memory cells
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Figure 2: From Colah blog: An LSTM RNN with four layers,
gated memory, and sigmoid activation functions

This paper will have the following structure: Section IV will
describe the data, Section V the methods, Section VI the re-
sults, and Section VII will conclude the paper with high-level
insights and future work.

4 Data

4.1 Data Description

The data were obtained from three sources. First, we gathered
meteorological and air pollution data from 2010 to 2014 from
Li et. al (2014), published as a UCI dataset. In order to ex-
pand this dataset to 2017, we received air pollution data from
Dr. Xiaojing Yao, as mentioned above, from 2015 to 2017. We
then got meteorological data from 2015 to 2017 from the US
NOAA (National Oceanic and Atmospheric Administration).
We queried their FTP server for the Global Integrated Surface
Data archives. Finally, we built a parser in Python to extract
weather data from their archived format.

4.2 Preprocessing and Features

We preprocessed and converted each dataset, which had hourly
information, to a time series so that it can be used towards solv-
ing a supervised learning problem. The dataset we received
from Dr. Yao contained pollution information from 35 specific
stations. We took the average value of all the stations at each
hour and joined this dataset with the meteorological dataset for
the years 2015 to 2017. We also preprocessed the 2015 to 2017
weather data by first extracting the hourly timesteps from the
larger set of 30-minute timesteps. We then combined the re-
sulting dataset with the pollution and meteorological data for
the years 2010 to 2014. We cleaned the missing values and
unified the format of the data taken from the NOAA archives.
For example, we changed the units of Wind Direction from
”Angular degrees” to a categorical variable of "NE”, "NW”,
”SE”, or ’SW”. This matched the format of the UCI dataset.

The features of our dataset are cumulative rain hours, cumu-
lative snow hours, wind speed, wind direction, dew point, air
temperature, and air pressure, date, year, month, day, and hour.
Figure 3 shows the summary statistics for these features. We
later took out date, hour, day, month, and year, and instead
built consecutive sequences (windows) from the time series.
The target variable is pollution measured in PMs; 5. The re-
sulting dimensions are 8§ by 68,870.

air_pressure air_temp cumulative_rain_hours ~cumulative_snow_hours day dew_point  hour  mont th  pm25 wind speed  year

count  68970.00 68970.00 68970.00 68970.00 6897000 6897000 68970.00 6897000 68970.00  68970.00 68970.00

mean 435202 6088 2.86 076 1569 2015 1150 644 8931 5462 2013.44
std 440363 147.48 639 492 880 26295 692 341 8304 544.56 227
min 991.00

-160.00 0.00 0.00 100 -341.00 0.00 1.00 0.00 000 2010.00

2% 1013.00 400 0.00 0.00 800 1400 600 300 2800 313 2011.00
50% 102600 2000 0.00 000 1600 500 1200 600 6858 1029 201300
75% 1016520  70.00 6.00 076 2300 2100 1800 900 11777 3000 201500
max 1046500 9999.00 81.00 9900 3100 999900 2300 1200 99400  9999.00 2017.00

Figure 3: Summary Statistics for our feature set and target

We cleaned several values found in the summary table of Fig-
ure 3. For example, the 9999 values as max were transformed


http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

as NaNs during preprocessing and handled accordingly. In
NOAA’s data dictionary, they are identified as “missing val-
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ues.

4.3 Data Partitioning

We partitioned the data into four sections: train, dev, and two
leave-out test sets. The training set consisted of years 2010
through 2012. The development set, in which we tuned our
hyperparameters and model configurations, was the year 2013.
Finally, the two leave-out sets were the year 2014 and the years
2015 to 2017. We created multiple leave-out sets in order to
test how the model performs on one year versus multiple years
of data.

5 Methods

5.1 Persistent Model Baseline

We used two persistent models to serve as baselines for the
sequence-to-sequence forecast. A persistent model uses one
or more previous timesteps to forecast the target variable at
the next timestep. The conceptual motivation (and assump-
tion) behind this baseline is that the predicted timestep would
not be very different from data collected in past timesteps very
close to it. That is, the data will persist across short periods
of time. To forecast the pollution level at the next hour or
future sequence of hours, we take into account the meteoro-
logical and pollution features set to a specific time lag value.
For instance, if we want to understand how the past 10 hours
of meteorological and pollution data affect pollution level at
the next hour, we take a time lag value of 10 and the predic-
tion hour as 1. We vary the time lag and prediction hours in
our models and measure their performance with the RMSE.

5.1.1 Nonlinear Regression

The first persistent model we used is a Nonlinear Regression.
Specifically, we used a Support Vector Regressor with a ra-
dial basis kernel. As the data exhibited cyclical patterns in our
exploratory analysis, we believed the nonlinear method would
capture some of these relationships effectively.

5.1.2 LSTM Sequence to Scalar

Next, we built an LSTM sequence-to-scalar model, in the
hopes to attain a similar persistent model. We altered the num-
ber of timesteps used for the previous sequence, using 1, 3, 4,
6, 8, 10, 15, and 25 timesteps. We also experimented with var-
ious network configurations, including number of layers, types
of layers, number of nodes per layer, loss functions, batch size,
and number of epochs.

5.2 Forecasting Model

We then designed a model that would forecast air pollution
hours or days into the future.

5.2.1 LSTM Sequence to Sequence

We used a LSTM Encoder and Decoder Architecture that
learns a fixed representation of the output. Future timesteps
is the quantity that is fixed. We again altered several network
configurations, including number of layers, number of nodes
per layer, and batch size.

According to studies by Geman, Bienenstock, and Doursat, al-
tering the number of hidden units might reduce overfitting and
increase model generalization. One possible rule of thumb is
to take a hidden dimension size of two-thirds times the sum of
the input and output layers [4]. The LSTM Layer may have
an input dimension of 30, a hidden layer of (2/3) x 42 = 14,
and an output layer of 12. In terms of hours, this translates
to using 30 hours in the past to predict 12 hours in the future.
Similarly, for a Deep LSTM with an encoder layer of size 30
and a decoder layer of size 5, we predict that a hidden layer
of (2/3) x 36 = 24 would be most effective. The same source
tells us that we should use a hidden dimension size of less
than the input dimension and greater than the output dimen-
sion. We tested various other configurations as well to confirm
these studies. Figure 4 shows the architecture of our Deep
LSTM.
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Figure 4: Deep Architecture with 2 LSTM layers and a Hidden
Layer in between.

We also used early stopping techniques, such as limiting the
number of epochs, in order to reduce overfitting.

6 Experiments and Results

We designed our models with various Python packages, in-
cluding Scikit-Learn, Keras, and native TensorFlow. For hard-
ware, we first benchmarked our tests on a CPU. We then ran
our heavier workloads on an AWS p2.xlarge instance, which
housed NVIDIA’s Tesla K80 GPU. For several sequence-to-
sequence LSTMs, we experienced a 4x speedup when moving
from CPU to GPU.



6.1 Development Set Results

6.1.1 Tuning SVR Sequence to Scalar and LSTM
sequence to Scalar

Comparison of LSTM Sequence to Scalar VS SVR Sequence to Scalar

45.0 = Tuning LSTM Sequence to Scalar /
= Tuning SVR Sequence to Scalar
425
40.0
w 3715
£
=z 350
325
30.0
275
250 % T T T T T
0 5 10 15 20 5

Time Lag

Figure 5: Comparison of RMSE for a Support Vector Regres-
sion persistent model VS LSTM model.

From Figure 5, it can be seen that increasing the time lag in the
SVR model is positively correlated with RMSE. According to
this model, the pollution level at any given hour is best deter-
mined by the meteorological and air pollution data of the past
hour. For the LSTM model, we can see that the RMSE is min-
imized at the lowest time lag, similar to SVR. We also see that
RMSE increases as the time lag increases. But the important
trend is that with the LSTM model, the RMSE increases much
more slowly over time lag relative to SVR. It also has a lower
error than SVR for each of the time lags. This shows that the
LSTM model is a better predictor over longer time lags than
other nonlinear methods like SVR.
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Figure 6: RMSE vs.Batch Size for a LSTM model

From Figure 6, it can be seen that as the batch size increases,
the RMSE reduces until the batch size equals 80, at which
point the RMSE increases. This shows that the batch size that
produces the lowest RMSE is 80.

6.1.2 Tuning LSTM Sequence to Sequence

From Figure 7, we see that the LSTMs with the lowest RMSE
on the Dev set have a hidden layer dimension of less than or
equal to the input dimension of 30 (shown with the red line).
Moreover, the model with the lowest RMSE occurs when the
number of hidden dimensions is 24, which is two-thirds times
the sum of the input and output dimensions, as Geman et al.
advised.

LSTM Seq2Seq Hidden Dim vs. RMSE

10 0 0 10 50 &0
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Figure 7: RMSE vs. # of hidden dimensions in a single hidden
layer.

Next, we measured the runtime as a function of batch size, hy-
pothesizing that a smaller batch size will incur greater costs at
runtime. We can see from Figure 8, however, that the small-
est batch size of 16 incurred a slightly slower runtime of 16
seconds versus 11 seconds, so this difference was not large.
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Figure 8: LSTM Seq2Seq Batch Sizes vs. Runtime.

The minimum runtime is when the batch size is 24. The fol-
lowing results thus used 24 for the leave-out sets.

6.2 Test Set Results

In Tables 1, 2, and 3, we use a model with the best hyperparam-
eters as tuned on the dev set to measure RMSE and R? values



on the test set. The tuned model has a hidden dimension of
24, and a batch size of 24. It is a coincidence that the hidden
dimension and the batch size are equal, but it would require
further testing to see if these two parameters have correlated

effects on model performance.

Table 1: Test RMSE for 2014 Leave-Out Set

Model 2014 RMSE 2014 R?
SVR 44.03 0.7985
LSTM Seq2Scalar 24.9 0.92
LSTM Seq2Seq 44.15 0.689

Table 2: Test RMSE for 2015-2017 Leave-Out Set

Model 2015-2017 RMSE  2015-2017 R?
SVR 46.01 0.749

LSTM Seq2Scalar 12.78 0.96

LSTM Seq2Seq 48.73 0.513

Table 3: Seq2Seq Test RMSE for Various Future Time Lags

Model 2014
5 future hours 44.15
10 future hours 74.8

120 future hours 108.1

RMSE 2014 R?
0.689
0.588

8 -0.328

Table 4: Seq2Seq Test RMSE for Various Past Time Lags

Model 2014 RMSE
20 past, 5 future  48.2

30 past, 5 future  44.15

40 past, 5 future  45.2

50 past, 5 future  47.3

60 past, 5 future 46.2

The runtime increases as the time steps get larger. Runtime for
30 past hours to 10 future hours was 21 seconds while 5 days

past to 5 days future was 161 seconds.

Figure 9 shows the SVR sequence-to-scalar, 4 hours previous
to 1 future hour, run on the 2014 leave-out. From Table 1

above, the RMSE was 44.03.
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Figure 9: SVR Seq2Scalar Prediction vs. Actual.

Figure 10 shows the LSTM sequence-to-scalar, 4 hours previ-
ous to 1 future hour, run on the 2014 leave-out. From Table 1,
the RMSE was 24.09.

Pollution [pm2.5]

LSTM Sequence-to-Scalar Test Prediction after 100 epochs of training

T Data
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Figure 10: LSTM Seq2Scalar Prediction vs. Actual.

Figure 11 shows the LSTM sequence-to-sequence, 30 hours
previous to 5 future hours. From Table 3, the RMSE was
44.15.

Pollution [pm2.5]

Hourly Times1eb'm subset of the Preaicted Year

Figure 11: LSTM Seq2Seq 30 Past hours to 5 future hours.

Figure 12 shows the LSTM sequence-to-sequence, with 30

time

steps previous to 10 future time steps. From Table 3, the

RMSE was 74.8. As you can see, the model starts to degrade.
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Figure 12: LSTM Seq2Seq 30 Past hours to 10 future hours.

Finally, we pushed the model beyond the within-day measures.
Figure 13 shows the prediction of 5 days into the future, us-
ing 5 days of the past. From Table 3, the RMSE for this was
108.18.
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Figure 13: LSTM Seq2Seq 120 Past hours (5 days) to 120 fu-
ture hours.

7 Conclusion

7.1 Insights

From this project, we see that we are able to forecast pollution
for many future hours within the same accuracy as prediction
for a single future hour. In particular, we notice that the error is
minimized when the future timesteps range from 2 to 10 hours.
From Figure 4, if we keep future hours constant, and vary past
hours, the RMSE stays about the same (within 5). This means
that the granularity of the previous day (short-term data) is sig-
nificant enough to capture changes in air pollution. The results
and the LSTM framework have predictive robustness, but only
until a certain future timestep. Then, the results degrade con-
siderably.

Predicting air pollution accurately up to ten hours in advance
can be extremely useful for city policy, and more specifically,
for dynamic public transit pricing. If such a city as Beijing
could predict in the morning that air pollution would be dan-
gerously high in the evening, then it could encourage public
transit use by decreasing fares for that day or by dynamically
enacting road congestion pricing for the evening rush hour to
discourage driving. This timestep of six to ten hours for future
forecasting is an encouraging stepping stone, with hopes that
further optimization would increase the predicting timestep to

days, which would help cities to offer longer-term services
such as medical checkups and free masks. It would also help
cities to prepare transit for a larger influx of travelers on high
pollution days, which would require more workers and more
frequency for their trains and buses.

In addition, the results of this paper can help in the manage-
ment of deployed sensors, primarily in decreasing power con-
sumption. We can now help cities save money by keeping their
sensors on only in six to ten hour increments, rather than 24/7,
since it was shown that short-term data is significant in predic-
tion and can effectively create a pollution trajectory without
constant monitoring. This will reduce the power consumption
of these sensors, and thus save cities millions of dollars per
year in electricity costs [17].

7.2 Future Work

Multiscale predictions can also be conducted to understand
how historical predictions affect future time lags. We could
combine all the data that lie within particular time lags into
one input for a multiscale prediction task, such as 6-12, 12-18,
and 18-24 hours, and train separate models to forecast the air
pollution from these separate lag periods [11].

Because long-term prediction tasks are naturally more diffi-
cult, they require more relevant historical data, including opti-
mum time lags, which adds another layer of optimization of
the LSTM model. This means that many hyperparameters,
such as batch size and number of LSTM cells, may still be
optimized to return a lower RMSE for longer future forecast-
ing. The hope is that by leveraging as much time series data
as possible we can create stronger weights in the RNN, based
on the sequence dependencies. As mentioned above, longer
prediction times can help cities in policymaking and resource
allocation.

8 Appendix

8.1 Source Code and Website

Our source code can be found at Deep Air. The project website
can be found at Deep Air at Berkeley I-School.

8.2 Training Set Visualization

In Figure 14 we present a series of time series plots for certain
features in our training set. We discovered cyclical patterns
within our data, thus motivating our use of nonlinear models
to fit the data.


http://github.com/vikmreddy/deep-air
https://www.ischool.berkeley.edu/projects/2017/deep-air
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rain, the rest of the features explained 93.5% of the variance.

Table 5: PCA for explained variance of our feature set

Figure 14: Cyclical patterns of Dew point, Temperature, and Feature % Variance Explained
Pressure in the Training set. The target pollution is shown dew point  32.0%
above.

air temp 17.4%
air press 16.7%
wind speed  15.7%
SNOw 11.7%
rain 6.6%
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