
Implementation of
NoSQL for Acme
Gourmet Meals
Project 3 - Aaron Shulkin, Mohammad Kanawati, Nayan Ganguli, Nicholas Luong

Pre-Delivery - Neo4j (Dijkstra's Single-Source Shortest Path)

Agenda

Post-Delivery - MongoDB | Neo4j (Harmonic Centrality | Louvain Modularity)

During Delivery - Redis

Pre-Delivery - Neo4j

Using Neo4j, we can implement Dijkstra's
Single-Source Shortest Path to optimize our
routes and find the quickest paths

This allows us to develop a path on how they
should best utilize BART to arrive on time

Traditional databases lack the nuance to
capture the complex relationships for each
destination (nodes) and their various
potential paths

Neo4j Graph representing our delivery map and routes

Real-time Tracking and Caching:

Redis excels in real-time data processing
and caching.

It can be employed to store and quickly
retrieve real-time information about delivery
vehicle locations, status, and other dynamic
data.

This allows for instant updates and
optimizations in response to changing
conditions, ensuring timely deliveries.

Compared to Traditional DB:

Redis operates primarily in-memory,
allowing for extremely fast data access and
retrieval.

This is crucial for real-time scenarios, where
quick access to dynamic data, such as
vehicle locations and delivery statuses, is
essential for efficient route planning and
optimization.

During Delivery - Redis

We can utilize the harmonic centrality algorithm with Neo4j to identify the importance of nodes
based on their harmonic mean distance to other nodes in the network

Below are examples of how we can implement this for reviewing future deliveries:

Post-Delivery - Neo4j

Used to identify the most strategic pickup locations at BART stations

Key pickup locations become central hubs, attracting a steady flow of customers

This strategic placement contributes to customer satisfaction, potentially increasing
business

We can also implement the Louvain Modularity algorithm
with Neo4j to detect communities in networks using
travel time as weight.

We apply a modularity score to evaluate the density of
connected nodes within a community and we can
recursively merge these communities into nodes

With the new nodes, we can do the following:

Reduce redundant stations to optimize pick-up locations

Set up a single docking station for our drone and robot
fleets inside these communities, as travel times between
stations are minimal.

Further run centrality algorithms to identify a central
station inside each community

Post-Delivery - Neo4j

Post-Delivery - MongoDB

Documenting and Updating Locations:

MongoDB can store information about
various pickup locations, including BART
stations and other strategic points.

The document-based structure allows
flexibility in capturing details such as
location coordinates, pickup schedules, and
available transportation modes (e.g.,
traditional trucks, drones, public
transportation).

Compared to Traditional DB:

As the delivery network evolves with the
addition of new pickup locations and
transportation modes, MongoDB's dynamic
schema accommodates changes without
requiring a predefined structure.

This flexibility is crucial in adapting to the
dynamic nature of the delivery business.

THANK YOU!

