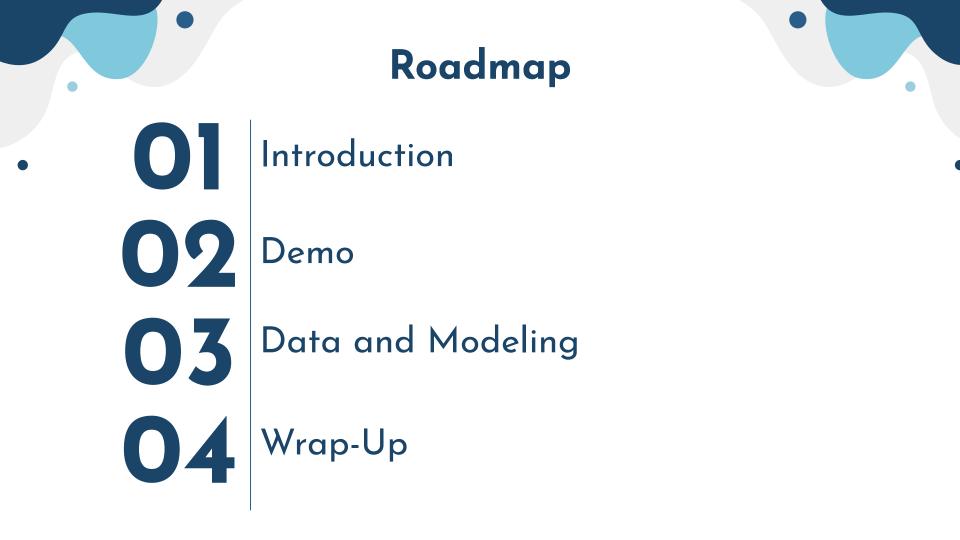
Capstone: Predicting a Climate Refugee Crisis

Robert Meyer, Felicia Liu, Brendan Foo, Leanna Chraghchian



Climate Refugee

A person who has been forced to leave their home as a result of the effects of climate change on their environment.

Internally Displaced Person (IDP)

Persons who have been forced to leave their homes as a result of natural or human-made disasters, and who have not crossed an internationally recognized state border.

The Problem

31.8 Million

people were internally displaced within the borders of their country due to weather-related hazards in 2022

of the 31.8 million displacements were a result of floods in 2022

1.2 Billion

people are predicted to be displaced globally by 2050 due to climate change and natural disasters. This is about 15% of the current world poplation.

Yet, no predictive technologies exist to help mitigate a climate refugee crisis.

The Mission

Bring awareness to the neglect that the data in this field is experiencing and show the potential life-changing impact of complete, quality data.

Our Model

A model that **predicts the relative level of internally displaced individuals** in a specific region *if a flood were to take place*.

Climate Refugee

a person who has been forced to a result of the effects of climate

Internally Displaced Peop

People who have been forced to le homes but have not crossed an ir recognized border.

https://www.figma.com/proto/7XYiW1g9OGeivnKblfl3pY/Diving-Landin g-Page?type=design&node-id=67-25&t=zTs43Q4hjzlEi1gO-0&scaling=mi n-zoom&page-id=0%3A1&starting-point-node-id=67%3A25

MVP

Demo

Who Are We Targeting?

Climate/Disaster Researchers Policy Influencers

Data and Modeling

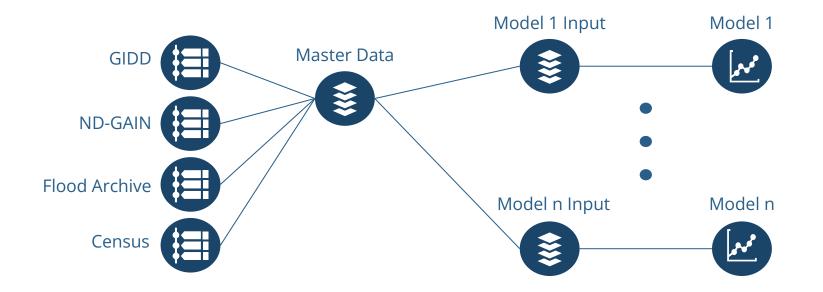
The Model

- Random Forest model predicting a "low", "medium", or "high" level of displacement (relative to global events) with an accuracy of ~52%. This model outputs the most impactful features in creating accurate predictions.
- **Support Vector Machine** predicts the raw number of IDPs. This is within 3000 IDPs 70% of the time

The Data

- Currently, data in the wild is decentralized and unorganized.
- We have **specific recommendations** to address these issues in data collection
- Our data combines four datasets into one that encodes, for each event, the time/place, magnitude, causes, and features of the country such as population measures and various factors related to preparedness for natural disasters

Data Pipeline



Raw Data Sources

	ISO	3	Country / Territory	Year	Event Name	Da	te of Event (start)		Dis	aster Inte Displacem		Disaster	Internal D	splacements (Raw)		Hazard tegory	Hazard Type	Haza	ard Sub Type
GIDD	0 TL	S	Timor-Leste	2013	Babulu gale		2013-01-17				5			5	Weather	related	Storm		Storm
ND-GAIN	ISO			1996	1997	1998	1999	2000	2001	2002			2013 20		2016	2017	2018	2019	2020
	0 AFG	6 Afghanista	n 0.496497	0.496497	0.496497	0.496497	0.496497	0.496497	0.496497	0.496497	0.17	5065 0.17	8628 0.2014	95 0.200231	0.261156	0.238742	0.21024 0.	224049 0.	213706
Flood				Count	ry	Ar	ea	Be	gan	E	nded	Mai	nCause	Seve	rity	IS03	Year	Mont	t <mark>h</mark>
Archive			0	Indone	sia	2178.	65 20	08-01	-02	2008-	01-06	He	avy rain		1.0	IDN	1	2008-0	01
		Name	e	Region	GENC	Year	Populati	on Pop	ulation	Density	/ (Peop	le per	Sq. Km.)	Net inter	rnationa	l migra	nts, bot	<mark>h s</mark> exes	IS03
Census	0 /	Afghanista	n 2008,A	fghanistan	AF	2008	27,703,5	39					42.5					222,570	AFG

	IDPs from Event	Economics	Governance	Social	Capacity	Ecosystem	Exposure	Food	Habitat	
0	270	0.178628	0.172592	0.335777	0.757451	0.507907	0.480512	0.580916	0.537736	
1	740	0.201495	0.193780	0.341216	0.732208	0.503280	0.480512	0.576083	0.539343	
2	244	0.201495	0.193780	0.341216	0.732208	0.503280	0.480512	0.576083	0.539343	/

_	Health	Infrastructure	Sensitivity	Area	Began	Ended	MainCause	Severity	Duration	Magnitude
0	0.832165	NaN	0.437181	14653.47	2013-04-23	2013-04-29	Torrential Rain	1.0	6.0	11.384192
1	0.828587	NaN	0.436659	83722.34	2014-04-20	2014-05-16	Torrential Rain	1.5	26.0	14.998823
2	0.828587	NaN	0.436659	83722.34	2014-04-20	2014-05-16	Torrential Rain	1.5	26.0	14.998823

_	Population	Population Density	(People per Sq. Km.)	Net international migrants, b	oth sexes	Scaled_IDP
0	31,098,161		47.7		-67,219	270
1	31,809,829		48.8		-58,115	740
2	31,809,829		48.8		<mark>-58,115</mark>	245

Modeling Approach

Feature Engineering

Combined a few features (i.e. duration, severity, and area)

Skewed Data Data Binning

Performed logarithmic transformation on IDP counts for flood events. Normalized all inputs Binned IDP counts two or three quantiles. Our problem then becomes a multiclass classification task.

Model Selection

Neural Network	 Able to capture nonlinear complex patterns High accuracy on categorical models
Support Vector Machine	 Performs well in high dimensional spaces High accuracy for regression model
Random Forest	 Good accuracy and robustness to overfitting Provides a measure of feature importances for interpretability

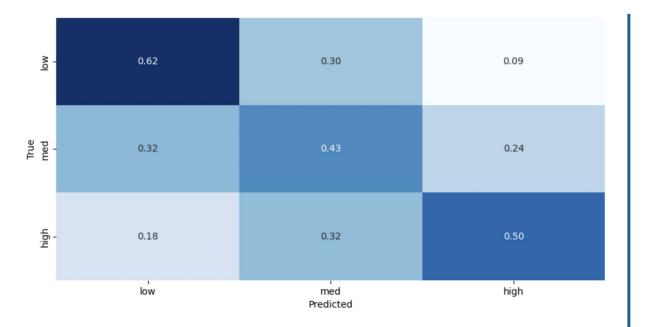
Model Results Summary

Model Type	Output	Recall	Precision	Test Accuracy
NN	3 Classes	H 0% M 0% L 100%	H 0% M 0% L 32%	33.90%
NN [Log + Norm]	3 Classes	H 60% M 8% L 76%	H 53% M 38% L 43%	47.20%
RF [Log]	3 Classes	H 50% M 43% L 62%	H 61% M 42% L 54%	52.00%
SVM [Norm]	3 Classes	H 38% M 30% L 53%	H 48% M 34% L 40%	40.59%
NN [Log + Norm]	2 Classes	H 56% L 67%	H 67% L 68%	66.30%
NN [Log + Norm]	Continuous	-	-	RMSE 167168
SVM [Log + Norm]	Continuous	-	-	RMSE 225414
RF [Log]	Continuous	-	-	RMSE 258013
Norm = Normalizec Log = Log-transforn			•	

Model Results Summary

Model Type	Output	Recall	Precision	Test Accuracy
NN	3 Classes	H 0% M 0% L 100%	H 0% M 0% L 32%	33.90%
NN [Log + Norm]	3 Classes	H 60% M 8% L 76%	H 53% M 38% L 43%	47.20%
RF [Log]	3 Classes	H 50% M 43% L 62%	H 61% M 42% L 54%	52.00%
SVM [Norm]	3 Classes	H 38% M 30% L 53%	H 48% M 34% L 40%	40.59%
NN [Log + Norm]	2 Classes	H 56% L 67%	H 67% L 68%	66.30%
NN [Log + Norm]	Continuous	-	-	RMSE 167168
SVM [Log + Norm]	Continuous	-	-	RMSE 225414
RF [Log]	Continuous	-	-	RMSE 258013
Norm = Normalized Log = Log-transforr			•	

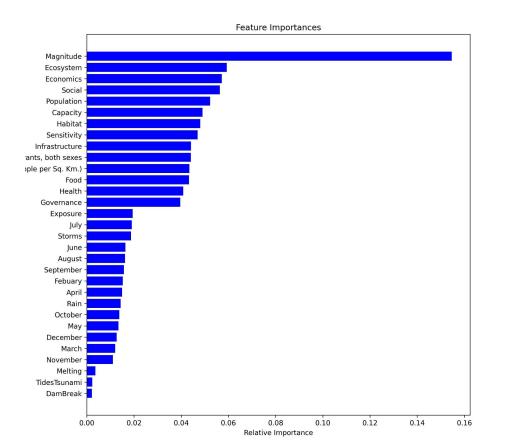
Random Forest Classification



Findings

- Achieved overall test accuracy of ~52%
- Top features included magnitude and other ND GAIN indicators (i.e. infrastructure, social, economic, etc)
- Confusion matrix and class recall scores showed model did best among all models for 'Medium' class

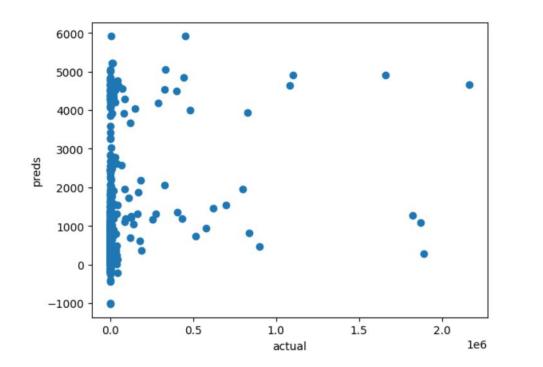
Random Forest Classification



Findings

- Achieved overall test accuracy of ~52%
- Confusion matrix and class recall scores showed model did best among all models for 'Medium' class
- Top features included magnitude and other ND GAIN indicators (i.e. ecosystem, social, economic, etc)

SVM Regression



Findings

- SVM with PCA IDP predictions were within 3000 IDP counts of true value ~72% of the time
- RMSE was fairly high (above 200,000)
- Group up data to find patterns and also sensitive to outliers or large events

Wrap-Up

Challenges

Data Availability

- Data access
- Lack of observations
- Lack of spatial information
- Limits of coverage and sharing

Event Definition

- Neglected field
- Varying definitions of what counts as a distinct flood event

Our Contribution

Current Industry Steps

- Reactive: only makes short term predictions after the event has occurred to allocate resources
- Have monitoring stations to predict IDP counts at those regions only

Our Improvements

- Takes other factors into account (environment, economic, social, and population density) in predicting IDP counts
- Makes IDP count predictions in the event of a flood, meaning one would only have to look at flood data
- Focuses on root causes

Next Steps

Use a unified global system better assess the impacts of climate change on flood displacement risk

Create a publicly available, up to date, centralized database where all the scattered information can come together

Final Note

13 Weeks

Using data science to help predict a climate refugee crisis

> ↓ Limited

Results

By 2050 15% of the world's population will experience displacement Continue with Trends

> Where the most vulnerable will be most neglected

Act Now

Help humanitarian agencies/governments prepare for the future

Thank you for listening!

Any questions?

Robert Meyer calrobert@berkeley.edu

Leanna Chraghchian theleanna@berkeley.edu

Brendan Foo bfoo@berkeley.edu

Felicia Liu felicialiu@berkeley.edu