WILDFIRE DETECTION USING SATELLITE IMAGING

Detect wildfires and empower insurance companies for improved risk management Team Wildfire Prophet - Liang Li, Iris Lew, Ivy Chan

> University of California, Berkeley | School of Information DATASCI 210 Capstone - Fall 2023

> > Final Presentation

December 14, 2023

Team Members

- Machine Learning Engineer
- Data Scientist
- Product Manager

Ivy Chan

- Data Engineer
- Web Developer
- Project Manager

Iris Lew

- Data Scientist
- Data Analyst
- Testing Manager

AGENDA

- 1. Problem & Impact
- 2. SME Interviews Key Takeaways
- 3. Market Opportunity & Target User
- 4. Answer User's Questions
- 5. MVP Demo
- 6. Data Pipeline & Feature Extraction
- 7. Models & Generalizability
- 8. Model Improvements
- 9. Challenges & Solutions
- 10. Conclusion

Problem & Impact

- Increasing the frequency and severity of wildfires as a global threat.
- Better use of high-resolution satellite imaging data for wildfire detection.
- Alarming statistics reveal rising fire-related deaths and extensive property damage.
- Wildfires result in a surge of insurance claims for property damage and losses.
- Insurance companies may experience significant financial losses due to wildfire-related claims.

Berkelev

SME Interview Key Takeaways

- Narrow down to the scope
- Many services already use satellite imagery to help inform them of wildfire risk, but cloud cover is always a challenge
- Adding weather is difficult
- Excess vegetation is a contributing factor to wildfires
- Climate change is a driving force of wildfires

Thanks to Meer Wu, Jenna Morabito, and Professor Matthew Potts!

Market Opportunities

Death rate

US fire deaths per million population rose by 18% over a decade, reaching 13.0 in 2021, up 14% from 2020's 11.4.

Land size

Fires impact 4 million sq. km of Earth's land annually, about half the size of the U.S.

Market opportunity

The forest wildfire detection market is set to grow at a 10.4% CAGR, reaching USD 5.1 billion by 2028

Target User - Insurance Companies

Wildfire detection Accurate wildfire detection and impact assessment. Improves underwriting processes and enhances Underwriting process client protection. Empowers proactive management and risk **Proactive Management** reduction.

Answer User's Questions

1. What is the wildfire probability given the location?

2. Should the business expand to this location/region/county given the wildfire probability?

MVP Demo

Please click the image to open the website.

Data Pipeline & Feature Extraction

Data Pipeline (Canada)

- Download 42,850 rows from Kaggle*
- PCA for raw pixel feature
 - Need 512+ principal components to capture 80%+ explained variance
 - Compression rate ~1.02, i.e., almost no compression

Original image (wildfire) Reconstructured (wildfire, rank=8)

- Feature extraction
 - HOG feature
 - Edge feature
 - LBP feature (recommended, 367,500 dims \Rightarrow 9 dims)
 - radius = 1 (radius of the LBP circle)
 - n_points = 8 (#points to sample on the LBP circle)
 - method = "uniform"

Explained Variance for PCA

*https://www.kaggle.com/datasets/abdelghaniaaba/wildfire-prediction-dataset

LBP Feature

• LBP (Local Binary Pattern) feature extraction flow

Source: Müller, Martin & Britz, Dominik & Ulrich, Laura & Staudt, Thorsten & Mücklich, Frank. (2020). <u>Classification of Bainitic Structures Using Textural Parameters and Machine Learning</u> <u>Techniques</u>. Metals. 10. 630. 10.3390/met10050630.

Data Pipeline (US)

- Download 1.88M US wildfire data from Kaggle*
- EDA for positive samples
 - o filtering, deduplication, DBSCAN clustering, stratified sampling
- Data generation for negative samples
 - k-d tree, random coordinates generation
- Download satellite images through Mapbox API

*https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires

Data Pipeline (US, Clustering)

- Motivation
 - Optimize satellite image acquisition and processing for adjacent fire events
- Clustering
 - Cluster closely located coordinates within a 1-mile radius
 - Employ DBSCAN for spatial clustering
 - Assign a weight of N based on the cluster size

Negative Samples Generation

- Goal and challenge
 - Goal: generate coordinates without wildfires as negative samples
 - Challenge: no collision/overlap with existing 1.88M US wildfire coordinates
- Proposed solution
 - Build k-d tree for existing 1.88M wildfire coordinates
 - Query the nearest neighbor for new coordinate (in O(logn) time)
- New coordinates generation
 - Step 1: for each existing coordinate, randomly generate a coordinate in the same state
 - Step 2: compute the distance between new coordinate and its nearest neighbor
 - Step 3: break if the distance is within 2~50 miles range, otherwise repeat step 1-3

min_lat

Negative samples generation using California as example

Models & Generalizability

Machine Learning Models (Canada)

Model	Precision		Recall		F1 Score		A	Notoo
	wildfire	nowildfire	wildfire	nowildfire	wildfire	nowildfire	Accuracy	Notes
LR + raw pixel	0.82	0.82	0.86	0.76	0.84	0.79	81.75%	Baseline
LR + LBP	0.81	0.80	0.85	0.75	0.83	0.77	80.32%	
LR + HOG	0.81	0.80	0.85	0.76	0.83	0.78	80.79%	
SVM + LBP	0.92	0.92	0.94	0.90	0.93	0.91	92.06%	
SVM + ResNet	0.91	0.92	0.94	0.89	0.93	0.91	91.75%	
NN + LBP	0.92	0.92	0.94	0.90	0.93	0.91	92.38%	Best

Generalizability

- A hybrid CV model trained with both Canada and US data
 - Overall accuracy 83%
 - 'nowildfire' class: precision 86%, recall 77%, f1-score 81%
 - 'wildfire' class: precision 80%, recall 88%, f1-score 84%
 - Deployed to production
- The quality of Canada dataset is higher than US dataset

ID	Training Data	Samples	Vectorized	Model	Accuracy			
					Canada	US	Overall	
1	Canada	30K	Yes	NN+LBP	93%	63% (65% N.E. US)	67%	
2	US	20K	Yes	NN+LBP	48%	74%	66%	
3	Canada + US	30K+20K	No	NN+LBP	92%	67%	83%	
4	Canada + US	30K+30K	No	NN+LBP	N/A	N/A	79%	

Model Improvements?

Improving on the Baseline Model?

Would eliminating urban coordinates lead to an improved model?

Predicted (Canada)

Wildfire

Actual Label: nowildfire

No Wildfire

Actual Label: wildfire

Actual Label: nowildfire

Actual Label: nowildfire

Actual Label: wildfire

Actual Label. nowildfire

Actual Label: wildfire

Actual Label: nowildfire

Removing Urban Points Improve Accuracy?

"A fire that is burning strongly and out of control on an area of grass or bushes in the countryside" - Cambridge dictionary's definition of a wildfire.

There seems to be a lot of buildings when we sample the satellite images from when the model does do a good job at predicting.

Dataset	Correlation Coefficient between Urban and Wildfire column	Correlation Coefficient between Urban and Predicted column
Canada Train	r=0.81	
Canada Validation	r=0.80	r=0.72
US Train	r=-0.09	
US Validation	r=-0.06	r=-0.18

Identify which points are in urban areas* and eliminate those points.

*Canada: https://www.oecd.org/cfe/regionaldevelopment/functionalurbanareasbycountry.htm *US: https://www.census.gov/geographies/mapping-files/2018/geo/carto-boundary-file.html

Canada Dataset Predicts Urbanism

	Accuracy (on wildfire column)					
Training Data (NN+LBP model)	Canada (w/ Urban): 6,300 rows, 55.2% wildfire	Canada (w/o Urban): 3,192 rows 16.1% wildfire	US (w/ Urban): 3,806 rows 50.0% wildfire	US (w/o Urban): 3,642 rows 49.3% wildfire		
Canada (w/ Urban): 30,250 rows, 52.1% wildfire	93.0%	93.2%				
Canada (w/o Urban): 14,099 rows 95.1% wildfire	57.1%	16.9%				
US (w/ Urban): 12,412 rows 38.7% wildfire			71.5%	71.9%		
US (w/o Urban) 11,880 rows 37.7% wildfire			71.9%	72.4%		

Struggles With the Canada Dataset

US Dataset Not Predicting Urbanism

Predicting on the Urban Column Instead

	Accuracy (on urban column)			
Training Data (NN+LBP model)	Canada (w/ Urban): 6,300 rows, 49.3% urban	US (w/ Urban): 3,806 rows 4.3% urban		
Canada (w/ Urban): 30,250 rows, 53.4% urban	86.6%			
US (w/ Urban): 12,412 rows 4.3% urban		96.5%		

Correct Predictions

Instead of predicting urbanism, it may be predicting whether there's empty images

Berkeley

Incorrect Predictions

There's still some "urban" images?

Canada

Actual Label: nowildfire

Actual Label: nowildfire

Actual Label: nowildfire

Actual Label: nowildfire

Actual Label: wildfire

Actual Label: wildfire

Actual Label: nowildfire

Actual Label: nowildfire

US

Challenges & Solutions

Challenges and Solutions

Mission

Detect wildfires and empower insurance companies for improved risk management

Acknowledgements

- Edwin Figueroa (DATASCI 231 Ethics and Privacy Expert)
- Meer Wu (Wildfire Rx)
- Jenna Morabito (Wildfire Rx)
- Professor Matthew Potts
- Joyce Shen
- Kira Wetzel
- Prahbu Narsina

Deliverables

- Project Website
- Project Website Demo
- Final Presentation Slide Deck
- ISchool Project Web Page

References

Links:

- <u>https://www.insurance.ca.gov/01-consumers/200-wrr/DataAnalysisOnWildfiresAndInsurance.cfm</u>
- <u>https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires</u>
- <u>https://www.kaggle.com/datasets/abdelghaniaaba/wildfire-prediction-dataset</u>
- <u>https://www.mapbox.com/pricing/#static-images-api</u>
- <u>https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdtrees.pdf</u>
- https://www.oecd.org/cfe/regionaldevelopment/functionalurbanareasbycountry.htm
- https://www.census.gov/geographies/mapping-files/2018/geo/carto-boundary-file.html
- https://calmatters.org/environment/2019/10/paradise-california-camp-fire-anniversary-cleanup/
- <u>https://atlantic.ctvnews.ca/halifax-area-wildfires-caused-more-than-165-million-in-insured-damage-1.6467917</u>

Images:

- Multiple images from Google Images
- <u>https://earthobservatory.nasa.gov/images/81919/rim-fire-california</u>
- https://www.theatlantic.com/photo/2018/11/camp-fire-ravages-paradise-california/575461/
- https://en.wikipedia.org/wiki/List of California wildfires#/media/File:AERONET La Jolla.2007295.terra.250m.jpg
- <u>https://www.creativefabrica.com/product/photo-image-icon/</u>
- <u>https://careersnews.ie/using-google-maps-in-education/</u>
- https://upload.wikimedia.org/wikipedia/commons/b/b1/Camp Fire oli 2018312 Landsat.jpg
- <u>https://a-z-animals.com/blog/discover-how-california-got-its-unique-shape/</u>
- <u>https://cliparting.com/wp-content/uploads/2016/06/Cloud-clip-art-images-free-clipart-images.png</u>
- <u>https://clipground.com/images/green-plant-clipart-8.jpg</u>

