Overpowered

Connecting Energy to the Grid, Faster

UC Berkeley Masters of Information and Data Science

Paul Cooper

Hailee Schuele

Zhifei Dong

Adam Kreitzman

Our Mission

Provide a faster, more efficient way of connecting new energy sources to the power grid.

Regulatory Bodies

Geographic overview of RTOs and ISO. Source: FERC.gov

The Interconnection Queue

When a new power generation facility wants to come online, they submit an application to the **interconnection queue**

The Approval Process

- Each interconnection request is subject to **long**, **technical studies**
 - transmission capacity
 - market conditions
 - incident analysis
 - feasibility and impact
- One request may be **dependent** on other requests
- Additional infrastructure investment is often needed to accommodate a new power generation source

Time, Money, and Dropout

- 1. 4+ year wait times
- 2. Unfeasible infrastructure costs
- 3. Wasted time and resources

The Power Grid's Big Bottleneck

The queue process is outdated, inefficient, and expensive

The Solution

Cluster Processing

- New federal ruling allows for processing multiple applications together as a cluster
- Clusters allow:
 - Shared development investment
 - Reduced queue wait times
 - Fewer withdrawn applications

Improving Clusters

- If we can:
 - Identify efficient clusters
 - Understand how likely a given cluster is to be successful
- Then we can:
 - Speed up the queue
 - Reduce dropout
 - Save time and resources

Our Product

- Recommend clusters of interconnection requests to be studied together
- Provide **scoring mechanisms** to understand how strong the candidate batch is
- Provide tools for expert users to customize their results
- Provide **an integrated platform** for data querying, visualization and decision support

Piecing the Data Together

- CAISO interconnection queue data
- California substation GIS data
- California transmission line GIS data
- California power plant GIS data (including retired ones)
- CAISO future transmission projects
- PowerWorld Power flow simulation software used by ISOs
- Simulated line capacity and load

No.	Project Name	Service Area	Expected In- Service Date	Project Cost (in millions of dollars)
1	Garberville area reinforcement project	Humboldt	3032	204
2	Tulucay-Napa #2 60 kV line Reconductoring project	NCNB	2028	4.6
3	Santa Rosa 115 kV lines Reconductoring project	NCNB	2028	74
4	Tesla 115 kV Bus Reconfiguration Project	CVLY	2030	55
5	Banta 60 kV Bus Voltage Conversion	CVLY	2024	17,5
6	Metcall 230/115 kV Transformers Circuit Breaker Addition	GBA	2026	15
7	South Bay Area Limiting Elements Upgrade	GBA	2027	11
8	Redwood City Area 115 kV System Reinforcement	GBA	2030	110.8
9	Lone Tree – Cayetano – Newark Corridor Series Compensation	GBA	2027	25
10	Pittsburg 115 kV Bus Reactor project	GBA	2032	26
11	Equipment Upgrade at CCSF Owned Warnerville 230 kV Substation	Fresno	2024	1.6
12	Los Banos 70 kV Area Reinforcement Project	Fresno	2029	60
13	Los Banos 230 kV Circuit Breaker Replacement	Fresno	2032	66
14	Panoche 118 kV Circuit Breaker Replacement and 230 kV Bus Upgrade project	Fresno	2032	184
15	North East Kern 115 kV Line Reconductoring Project	Kern	2032	255
16	Mesa 230/115 kV spare transformer	CCLP	2132	50.48

Key Data Takeaways - Completed Queues

Key Data Takeaways - Completed vs. Withdrawn

Key Data Takeaways - Current Queue

The Technical Approach

Concept Abstraction & Operationalization

Concept	Variables		
Location	 Geolocation of Interconnection Point Proximity to Existing Infrastructure (retired plants) Proximity to Planned Infrastructure 		
Infrastructure	 Included Storage Transmission Availability Generator Type(s) Amount of Energy Output 		
Process	 Permit Status Expected On-line Date Queue Position Utility company 		

Output Variables

Measurement	Meaning
Likelihood Scores	• Likelihood of success based on features learned from historical data
Cluster Strength	• The strength of the recommended cluster as a whole using aggregated similarity calculations
Total MegaWatts	• The total MWs provided to the grid by the cluster minus the current available transmission capacity

Data Pipeline

- Databricks & Blob Storage
- Feature Selection/Engineering
 - SME feedback
 - Inference from past interconnection requests
- Preprocessing for Machine Learning:
 - VectorAssembler + Scalers
 - Generating a numeric representation

Likelihood of Approval

- A method of judging the strength of an application based on supervised learning past data and future grid infrastructure development.
- Combines coefficients from supervised learning with proximity to retired power plants and future transmission projects to gauge relative strength of a grid applicant.
- Allows a decision maker to consider the probability of application success in cluster-building process.

Custom Clustering Algorithm

- Crafting a similarity algorithm that involves group subsets + process subtleties not a simple or intuitive process to create.
- Variable-centric similarity inspired by Cosine Similarity.
- Custom similarity algorithms built to handle all variables.
- Only considering projects downstream for each project (i.e in a FIFO approach, what projects could be added to this one to form a cluster, maintains fair process)

Sample Results

Demo - Clustering Tool

Demo - Interactive Map

Overpowered - Connecting Renewable Energy to the Grid Faster

Home Clustering Power Grid Map Details

Interactive Map

Each application in the queue data indicates the county where the project is to be built. The application also briefly describes the station or transmission line it plans to connect to. Therefore, the interactive map allows the user to explore the available datasets (transmission lines, substations, retired power plants, and future infracture projects) by California counties.

Here are some examples of using the interactive map:

- Scenario 1: The application indicates the transmission line it plans to connect to. The user can load the current queue and quickly find the shortest distance to the nearby transmission line. Additionally, the user can compare the proposed power with the
 remaining line capacity to determine if the transmission line has enough capacity for the application.
- Scenario 2: The application includes a power storage unit. The user can load the current queue and the retired power plants to check the availability of the nearby plants as ideal storage units.
- Scenario 3: The project location of the application is far away from the existing infrastrucure. The user can load the current queue and the future infrastructure to determine if an infrastructure project is to be built near the site.

Currently, the querying map only supports California database.

Available Datasets

- US state boundaries: base map filled in gray color
- · California county boundaries: base map filled in yellow color
- California transmission lines: base map lines in blue color. The transmission lines are labeled by their names and simulated remaining capacity. Hover over a transmission line to view.
- Additional datasets
 - California substations: add-on points in "red triangle". The substations are labeled by their names. Hover over a substation to view.
 - · Retired power plants: add-on points in "black cross". The retired power plants are labeled by their names and dates of retirement. Hover over a plant to view.
 - Current queue: add-on points in "green diamond". The queue applications are labeled by their names and station/transmission line to connect to. Hover over an application to view.

Key Takeaways

TULE WIND Suggested Cluster

The Evaluation

Measuring Impact

- Our ultimate goal is to **improve queue efficiency**
- We want to measure:
 - Cluster strength
 - How compatible are the projects within a cluster?
 - How likely is the cluster to be approved?
 - Improved wait times
 - Are we speeding up the queue?

The Tool's "Goodness"

SME Feedback

"The old way has its limitations and everyone complains about it"

"When we're trying to advise clients, the want to know where the best place to connect would be... and we really don't know"

> "Having historical data boiled down is the value of your tool. You don't have to rerun the study every time (you assess a new applicant)"

The Overpowered Value

Breaking Down a Complex Problem

- Technical Challenges
 - Piecing together various data sources of different types
 - Calculating unknown variables such as transmission line capacity and usage load
- Human-Centric Challenges
 - Abstracting technical and human-centric process considerations
 - How to allow tool flexibility in an inexact problem-space
 - Machine learning expertise in an antiquated system

Roadmap

- Extend the application to developers
- Incorporate additional data points that grid operators use
- More SME feedback
- Additional data outside of California
- Incorporate outcomes from initial cluster studies
- More supervised ML-focused approaches to grid expansion built on top

The Mission

Impact

Provide a faster, more efficient way of connecting new energy sources to the power grid.

Acknowledgements

- Damian Berger (SME at Atwell Group)
- Annie Polakowski (SME at Atwell Group)
- Dr. Roy McCann (Principal Investigator at GRAPES)
- Thomas Dempsey (SME at MYNO Carbon)
- CAISO Customer Support
- UC Berkeley MIDS Capstone class and professors

"Striking a balance between a slow and certain approach and considering all-comers fairly is really the heart of the solution."

- Damian Berger (SME at Atwell Group)