

A Platform for Drug-Drug Interaction Prediction

Our Team

Mai La Data Scientist Data Engineer | MLOps

Grace Lee

Data Scientist Product Manager | UI

Radhika Mardikar

Data Scientist ML Engineer | UI

01

Impact

Opportunity Target Users

02

Product

Quick Demo

03

Approach

Details on data Scoping ML set up

Results

Evaluation Future Work Conclusion

01 Impact

=	

Drug - Drug interactions (DDI) can have severe effects

 52% of adverse drug effects are preventable¹ Account for 18.3% of all adverse drug effects²

22.4% of adults in the US use 5+ medications³

² Source: <u>Jiang et al., 2022</u>

Drug Interaction Testing is Expensive

User Interviews

Pharmacist - Private

• Manually find DDI

Supplement Co CEO

- Report for FDA
- Lots of testing

Org Chem PhD

- Chemical Formula
- Mechanism of Action

•

Pharmacist - CVS

Have built in database for searching

=		

Optimize DDI testing and assist drug companies to bring new drugs to market

Input:

• SMILES (Simplified Molecular-Input Line-Entry System) Drug structure

COC1=CC2=C(C=C1)N=C(N2)S(=O)CC1=NC=C(C)C(OC)=C1C

• Mechanism of Action Pathway

This drug stops gastric acid secretion by selective inhibition of the H+/K+ ATPase enzyme system...

Output:

- Prediction Probability of Positive Interactions
- Breakdown of supplement vs
 medication
- Downloadable table with drug list and probabilities

O2 Product

Product Feedback

Dr. Han Dang, PharmD Pharmacy Manager

Mai Do, RPh. , MBA Pharmacy Manager, CVS

Dr. Tuan La, PharmD CEO, Global Express Pharmacy Impressive that AI could extract DDI for new drug development.

I was amazed by how fast this tool can help define possible interactions between a new drug with hundreds of available drugs at a very high level of accuracy. This definitely help drug discovery much faster and more efficient with a lower cost. Traditionally, the process of evaluating drug interactions might take months or years of experiments in vitro or in vivo. With DD.ai, it's less than 1 minute. Simply amazing!!!

Good start for interaction checker. It would bring greater values to the users by serving a high accurate AI model which focus on a certain drug family like antibiotics or cancer treatment drugs.

O3 Approach

Data Sources

DrugBank (Features):

- Drug SMILES
- Action Pathway

Median Word Count / Token Length

NIH (Outcome):

• Drug Interactions

Key Considerations

3	Ţ. Ţ.		
850+	SMILES	512	Drugbank
Interaction Types	Chemical structures	Tokens	data
Need to reduce	Non-traditional text encodings	Limitation for NLP	Limited to pairs of
scope		BERT encodings	drugs

Scope and Encodings

Scope

850+ Class Prediction Unfeasible

Binary Classification

Text-based features

Morgan Similarity

Encode SMILES chemical structures into vectors

Google Pegasus PubMed

Summarize large text blocks of drug information

BioClinical BERT

Encode above features for enhanced differentiability.

Architecture

Morgan Similarity

Key Takeaways:

- Encode SMILES with Morgan Similarity
- Create 300 clusters of encodings
- Take cosine similarity of new SMILES with 300 clusters to reduce dimensionality

Text Encodings

Google Pegasus PubMed

Summarize large text blocks of drug

information

BioClinical BERT

Encode features using BERT model pre-trained on biomedical texts

04 Results

Model Registry

Baselines

Improvement

Logistic Regression

F2: 70% AUPRC: 72%

Morgan Similarity Neural Net

F2: 73% AUPRC: 83%

Final

Morgan Similarity + BioClinicalBERT SMILES Only

F2: 83% AUPRC: 81%

XGBoost

F2: 70% AUPRC: 74%

BioClinicalBERT
 SMILES Only

F2: 81% AUPRC: 86%

Morgan Similarity + BioClinicalBERT SMILES & Pathway

F2: 83% AUPRC: 83%

Evaluation

Morgan Similarity + BioClinicalBERT on SMILES & Pathway

Evaluation

Further hypertuning in progress!

Future Developments

Product Focus

Improve model predictions on specific drugs groups (i.e. antibiotics)

Modeling

Graph base GNN Additional features: target proteins

Encoding

Train BioBERT with drugs target & action pathway texts

Latency

Inference with GPU instances

Accomplishments

New Drug Development

Inform potential DDI with drug formula

Scalability

Autoscaling with AKS

NLP Model Serving

Morgan Similarity + BioClinical BERT

Interpretable Results

Graphs and downloadable CSV

Reimagine drug development by transforming drug-drug interaction detection

Q&A Thank you!

dd-ai-predict.streamlit.app

Acknowledgements

Professors:

- Joyce Shen
- Cornelia Ilin
- James Winegar

SME, Advisors:

- Roop Raich
- Tim Roth
- Dr. Han Dang, PharmD
- Mai Do, RPh. , MBA
- Dr. Tuan La, PharmD

References

- 1. <u>Preventable ADE</u>
- 2. Percent of ADE
- 3. Adults using multiple medications
- 4. Drug Discovery Market Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023 – 2032
- 5. Drug Approvals
- 6. <u>BERTChem-DDI : Improved Drug-Drug Interaction Prediction from text using Chemical</u> <u>Structure Information.</u>
- 7. Drugbank: a knowledgebase for drugs, drug actions and drug targets
- 8. <u>SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules</u>
- 9. DrugBank database. Version 5.1.10. 2023
- 10. <u>Google/Pegasus-Pubmed</u>
- 11. Publicly Available Clinical BERT Embeddings

Thanks

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and images by **Freepik**