

HomePro

Understanding the cost of your future home

The Team

Yuna Kim

Nitin Swarup Sokhey

Preethi Raju

Market Opportunity

Home buying can be an Odyssey!

85% of people we surveyed specified that utility usage and environmental risks were crucial factors influencing their purchase decisions.

Industry Expects also identified first time home buyers being concerned about an asset's "value" thinking of a home as an investment.

The Gap... Competitors are not investing in this space!

DEMO

A Two Part Problem...

Predicting House Utilities Costs

Using Historical Climate & Energy Usage Data, We will be predicting future energy usage needs based on current climate projections.

Evaluating Homes Holistically

Using aggregated statistics for a given house, we will be creating a scoring algorithm to educate new homebuyers make environmental and financially sensible decisions.

Predicting Home Price

Listings Map view

Purpose:

- Users from different State, Foreigners
- which district / county to choose for less "Over Priced!" houses

Modelling Decisions

- Data Preparation:
 - 100,838 individual houses, 94 zipcodes
 - Each zipcodes: Train: 80% Test: 20%
- Feature Generation
 - Base model version: 7 features + zipcode
- Final Model
 - Random Forest Regressor
- Final Score Metric
 - Percentage difference between
 Listed Price Predicted Price

Predicting Utilities

Modelling Decisions

- Data Sourcing
 - NOAA and PG&E Public Datasets
 - January 2013 to Present Day
 - San Francisco Bay Area (108 Zip Codes)
- Modelling Approach
 - Combined Utilities Cost
 - Average Monthly Temperature Regressor
 - Used Pycat to Evaluate Multi-stream Models
- Final Modelling Choices
 - Light Gradient Boosting Machine

	Model	MAE	MSE	RMSE	R2
lightgbm	Light Gradient Boosting Machine	17.8752	2260.2701	42.4133	0.7546
rf	Random Forest Regressor	18.3278	2262.1368	42.6986	0.7462
dt	Decision Tree Regressor	22.1468	2867.2272	49.4165	0.6531
gbr	Gradient Boosting Regressor	25.4198	3165.3358	52.4726	0.6336
et	Extra Trees Regressor	25.0975	3366.8988	55.6102	0.5811

Examples of Predictions

Expected utilities cost change over the next 10 Years

Final Thoughts

Further Plans

- Expand Modelling outside of the SFBA
- Incorporate Further Climate & Neighborhood Data
- Deeper Analysis into Regional Utility Growth
- Rollout User Testing to Real Buyers!

Understanding your potential home's cost should be simple!

Thank you!

Breakdown of Team Responsibilities

Team Member	Contribution
Melanie Herscher	 Data Sourcing (Utilities) Data Engineering and Transformation (Utilities & Optimization for Listings) Time Series Exploratory Data Analysis (Utilities) Initial Classical Time Series Modelling Analysis (Utilities) Exploratory Modelling Analysis (Listings) Project Management Presentation Creation & Initial Script Generation Project iSchool Page Write-up & Posting
Yuna Kim	 Exploratory Data Analysis (Utilities) Initial ML Time Series Modelling Analysis (Utilities) Advanced ML Modelling Analysis (Utilities) Exploratory Modelling Analysis (Listings) Final Modelling Analysis (Listings) Final Presentation Model Visualizations (Utilities & Listings)
Nitin Swarup Sokhey	 Surveying Potential Buyers Final Demo Design & Implementation
Preethi Raju	 Industry Expert Interviews Data Sourcing (Listings) Initial Data Engineering and Transformation (Listings) Exploratory Data Analysis (Listings) Initial Modelling Analysis (Listings)

Appendix

Correlation Plots for Temperature Against Usage

Baseline Modelling - Zip Code Specific Approach (Elec)

Baseline Modelling - Zip Code Specific Approach (Gas)

Advanced Modelling - VARs with Temperature

Autocorrelation & Partial Autocorrelations (Elec)

Autocorrelation & Partial Autocorrelations (Gas)

Utilites Cost Calculation Breakdown

House price model Breakdown

99 zipcode Price distribution

Classification group by: 5 quantile by price --- RandomForestClassifier Confusion Matrix 0 4010 777 13 96 28 1 788 2444 36 1059 229 2 9 29 4187 134 791 3 104 998 163 2546 1134 4 34 235 877 1220 2759

Average Percentage Difference

Actual - Prediction

Average percentage change delta

white: negative values underpriced

RED: positive values overpriced

Paratemetized for individual listings on Website

Zipcode Effect Model

House as is vs Zipcode Effect
Price predicted without zipcode Price predicted with zipcode
model

white: houses underpriced to zipcode (locational) cause than the features of the house itself

RED: houses overpriced due to zipcode (locational) cause than the features of the house itself

94 zipcodes 126,587 Individual Houses

Features: 25 features

Utilities Prediction Full Modelling Evaluation List

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE	TT (Sec)
lightgbm	Light Gradient Boosting Machine	17.8752	2260.2701	42.4133	0.7546	0.1266	0.0749	0.2100
rf	Random Forest Regressor	18.3278	2262.1368	42.6986	0.7462	0.1343	0.0777	0.2360
dt	Decision Tree Regressor	22.1468	2867.2272	49.4165	0.6531	0.1649	0.0963	0.1680
gbr	Gradient Boosting Regressor	25.4198	3165.3358	52.4726	0.6336	0.1714	0.1109	0.1900
et	Extra Trees Regressor	25.0975	3366.8988	55.6102	0.5811	0.1719	0.1080	0.2320
knn	K Neighbors Regressor	26.5964	3615.6036	58.1512	0.5414	0.1828	0.1139	0.1660
ada	AdaBoost Regressor	37.5112	5139.4785	69.3230	0.3545	0.2398	0.1731	0.1700
br	Bayesian Ridge	44.7779	7674.2269	85.8472	-0.0063	0.3130	0.1954	0.1700
ridge	Ridge Regression	44.7822	7676.4847	85.8581	-0.0065	0.3131	0.1954	0.1660
lar	Least Angle Regression	44.7825	7676.6461	85.8589	-0.0065	0.3131	0.1954	0.1780
Ir	Linear Regression	44.7825	7676.6461	85.8589	-0.0065	0.3131	0.1954	0.1800
huber	Huber Regressor	50.8121	7590.8207	85.7223	-0.0128	0.3226	0.2536	0.1820
lasso	Lasso Regression	50.8291	7917.9244	87.2857	-0.0419	0.3298	0.2438	0.1640
en	Elastic Net	50.8287	7917.9756	87.2860	-0.0419	0.3298	0.2438	0.1660
llar	Lasso Least Angle Regression	50.8291	7917.9244	87.2857	-0.0419	0.3298	0.2438	0.1800
dummy	Dummy Regressor	50.8290	7917.9005	87.2856	-0.0419	0.3298	0.2438	0.1600
omp	Orthogonal Matching Pursuit	50.3881	8014.9476	87.8201	-0.0549	0.3306	0.2393	0.1780
par	Passive Aggressive Regressor	175.8288	38592.5676	195.8245	-4.5574	2.3152	0.8983	0.1720

Video: Utilites Predicitons Through Time Interactive

