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The World
Has Decided




However,
Our Systems
Are Not
Ready

AP News

https://apnews.com > article > renewable-energy-climate...
Electrical grids aren't keeping up with the green energy ...
Oct 16, 2023 — Stalled spending on electrical grids worldwide is slowing the rollout of
renewable energy and could put efforts to limit climate change at risk if millions ...

|IEA — International Energy Agency

https://www.iea.org » news » lack-of-ambition-and-atte...
Lack of ambition and attention risks making electricity grids ...
Oct 17, 20 Lack of ambition and attention risks making electricity grids the weak link in
clean energy transitions - News from the International Energy Agency.

The New York Times
https://www.nytimes.com » 2023/06/12 > climate > us-e...

Why the U.S. Electric Grid Isn't Ready for the Energy ...

Jun 12, 2023 — Already, a lack of transmission capacity means that thousands of proposed wind
and solar projects are facing multiyear delays and rising costs to connect to the ...

~\ Forbes
(F)

https://www.forbes.com > Innovation > Sustainability

Will Power Grids Keep Pace With Renewable Growth?
Jan 26, 2024 — The US power grid, for example, needs to be updated for transmitting modern
renewables. Over 930 gigawatts of renewable energy, vital for an 80% renewable share ...

Reuters
https://www.reuters.com > business » energy > electric-...

Electric grids need major upgrades to aid global energy ...
Mar 30, 2 — New transmission and distribution networks must also be able to accommodate
sudden changes to power loads generated by renewable farms caused by reduced ...




Especially for local distribution grids ...
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Especially for local distribution grids ...

Icons: thenounproject.com
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Power from Ato B
Capacity Planning
Network Maintenance
System Protection
Event Management

... all the above ...
System Balancing
Congestion
Management
Voltage Support
Network Resilience



The Problem: Distributed and Hidden

Consumer
PCC13 C14 F
! PCC 14 Solar
— Meter
Load
O « @@
Ccs8 c9 PCC9 c10
PCC8 f pcc1o ~CN

CC11 jti,/@
C12

PCC12

Adapted from: Resch, Matthias & Ramadhani et al. (2015). Comparison of control strategies of residential PV storage systems. 10.13140/RG.2.1.3668.2084



Utilities are already recognizing the problem ...

“Nearly three-quarters of utilities say . § Voltage visibility and
customer adoption of behind-the-meter -

DERs creates operational challenges.”

control issues

o g _ 49% 8 Back-feeding
“Limited visibility and understanding of DER

behavior creates operational challenges
and impacts grid performance.” 42%

Protection and control
coordination issues

“(Traditional) Solutions Exist ... data shows Distribution transformer and

adoption to be slow.” conductor overloads

<J I\

DERs: Distributed Energy Resources 24

o
o

Masked or hidden loads

Oxford Economics and Siemens, Seeing Behind the Meter: How Electric Utilities are Adapting to the Surve in Distributed Energy Resources (2024).



And the potential benefits of solving it ...

Operations department Planning department
“How would
u Reduce SAIDI* Improve allocation of capital investments
° ° b ° | ° t [ ] t 64% 53%
y Reduce SAIFI™* Extend grid infrastructure asset life
[ ]
behind-the-meter s

Increase productivity Reduce costs

DERs impact the
f O | | OWi n g Reduce O&M costs Increase customer satisfaction

47% 45%
m rd
e p a r e n S Increase customer satisfaction
°
38% * SAIDI = System Average Interruption Duration Index

** SAIFl = System Average Interruption Frequency Index

Oxford Economics and Siemens, Seeing Behind the Meter: How Electric Utilities are Adapting to the Surve in Distributed Energy Resources (2024).



Addressing the problem using existing
infrastructure ...

“In 2021, U.S. electric utilities had about 119 million advanced (smart) metering
infrastructure (AMI) installations, equal to about 72% of total electric meters

installations.” - EIA

Number and percentage share of AMI installations by sector, 2021

Residential

Commercial

Industrial

Transportation

Total

104,237,855 (73%)

13,908,481 (69%)

574,726 (68%)

1,879 (55%)

118,722,741 (72%)

Energy Information Administration, How many smart meters are installed in the United States, and who has them? (2022). https://www.eia.gov/tools/fags/faq.php?id=108&t=3




Addressing the problem using existing
infrastructure ...

Power (kW)

Net Load
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Addressing the problem using existing

infrastructure ...

Net Load Signal
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Data Sources

/ Training Data \

Simulated
10k houses (1-year)

@) ResStock

& % N R E L
\ NATIONAL RENEWABLE ENERGY LABORATORY/

/ Test Data \

Measured
68 houses (mixed)

-3-2- PECAN STREET

(SOLCAST




MLOps: Overall Setup
o]

TorchServe AWS EC2

Model
@ Staged Data
AWS S3 l DEployment

Sagemaker
Jobs A

Training/Tuning

Augmentation ]—» Jobs _l )
S‘p“af"(\z f __________ Torch Archiver

——————————————————————————————

11 Model Spec ‘ - . . Model Selection |
: Pre-Processing i . (Local Machine) | j Training Artifacts —>i and Packaging |

2 BE |
Jupyter
= ® .

Raw Data Sagemaker AWS S3

Experiments

AWS S3




Multi-Model Approach

Net Load Signal
(2-day sliding window)

Irradiance Signal
(2-day sliding window)

Model A
(Solar Classifier)

Y

Model B
(Solar-Estimator)

yes

no

Realtime

Gross-Load Estimate

A

A

A

Realtime

Solar Estimate




Multi-Model Approach: Why?

Solar systems don't just appear!

/\ Can use last 24-hour cycle as

( X opposed to sliding window.
Model A
( )

Solar Classifier

Leads to ~100x reduction in

v training examples.

>> Cheaper to Train! <<



Models: Solar Classifier

Model A
(Solar Classifier)




Models: Solar Classifier | Architecture

—_I_|

e Feature: net electrical
load (‘x__net’)
o  Window size: 96
(15-min increments)
=1 day

e Label:0or 1, house
generates PV or not

(y_pv)

Sigmoid

Input layer
LSTM layers

e Hyperparameters:
o Batch size: 512
o Learning rate: 0.005
o Number of LSTM
layers: 3
o Hidden units: 64
o Bidirectional: true

Convolutional layer

Output layer




Models: Solar Classifier | Training and Performance

Validation Classification Report

Training and Validation Loss

ResStock data e — manus
precision recall fl-score support 0321
0.9 0.95 9.9% 0.97 1339600 0.101
1.e 0.99 0.95 0.97 13839600 g
0.08
accuracy ©.97 3679200
macro avg 0.97 0.97 @.97 3679200 0.06
weighted avg 0.97 0.97 .97 367928@
0.04 T
) 2 4 6 8
Epoch
o . Training and Validation Accuracy
Test Classification Report 0985 | v accursey
—— Validation Accuracy
0.980
Pecan St data
0.975
precision recall fl-score support > 0970
0.0 0.74 0.93 2.83 98450 S
1.0 9.91 0.68 0.78 9845@ 0.960
0.955
accuracy 2.81 196900
macro avg 0.83 0.81 2.30 196900 0930

weighted avg 0.83 0.81 2.80 196900 ° : ¢ ¢ ¢

Epoch



Models: Solar Estimator

Model B
(Solar-Estimator)




Models: Solar Estimator | Function

2 Predict the
Solar output
11 atT
Seq ;.
To
g |
Point

Given the net load signal’s values from T to T-192



Models: Disaggregation | Baselines

Dummy (negative signal = solar) Linear Regression
MSE ~ 0.05 MSE ~ 0.06

—— netload >
159 — dummy-prediction

—-0.1 1
1.0 A z

i E -0.2
; c
s g

: _— © —0.3 1
g 2
8 [
[}

0.0 e

. —0.5 1

—0.6

0 25 50 75 100 125 150 175 200 o4 e i v v
Net Load (kW)

time



Models: Disaggregation | Model Architecture

|\\ Hyperparameters: Solar(t)
L\ - Window size
N _ LSTM Depth / Hidden Size I
: AN - Optimization (lr / momentum / lr schedule). '
: N - Weight initialization Linear
\
|
| \\ ————————————————————————————————— 1--1-——
| N
| ) LSTM
/
/
S S S— L S—  E—  E— —
: // concat concat concat concat concat
——————————————————————— v 1 1 1 I I
Chamnels: [ ¢ { || 2 { t1 { t
Step in tlme - irradiance I I I I I

Signals History




Models: Disaggregation | Training and Performance

Train Performance Validation Performance Test Performance
4500 houses (Simulated) 500 houses (Simulated) 32 houses (Real-World)
~5x improvement ~4x improvement ~1.7x improvement
MAE MAE MAE
Validation Losses (50 Experiments) 0.8 7 o 0.8 7 o 0.8 1
8
0.030 1 0.7 1 0.7 1 0.7 A
o e}
0.025 1 0.6 1 0.6 1 § 0.6 -
[0}
b B 2 o
0.020 - 0.5 0.5 8 0.5
(9]
2]
3 0.4 A 0.4 A 0.4 A
0.015 A
0.3 1 0.3 1 0.3 A
(o] [o}
0.010 A o 8
0.2 1 0.2 1 & 0.2 1
0.005 A
0.1 1 0.1 1 0:1. T
0 10 20 30 40 50 60 70
Epoch 0.0 0.0 0.0

model baseline model baseline model baseline



Models: Disaggregation | Post Mortem

Model performs better in winter time ...

Training Validation




Models: Disaggregation | Post Mortem

Better performance / lower variance for higher pv penetration ...

10!

Training
100 4
oo * Mean
. . _ , | gross load
0 10 20 30 a0 50 Peak SOlar
Peak PV Penetration (Max(PV) / Mean(Gross Load)) .
Penetration
10! Training
qp 108
& « Peak Solar
gl ' -

Peak PV Penetration (Max(PV) / Mean(Gross Load))



Models: Disaggregation | Post Mortem

Better performance / lower variance for higher pv penetration ...

10!

100 o

1073

10! 4

100 4

MAPE

1071 4

Training

10 20 30 40 50
Peak PV Penetration (Max(PV) / Mean(Gross Load))

Training

10 20 30 40
Peak PV Penetration (Max(PV) / Mean(Gross Load))

w
<
=

MAPE

10!

100 -

10-1 -

10—2 -

1073

101 -

100 4

1071 A

Validation

10 20 30 40
Peak PV Penetration (Max(PV) / Mean(Gross Load))

Validation

10 20 30 40 50
Peak PV Penetration (Max(PV) / Mean(Gross Load))




Models: Disaggregation | Post Mortem

Loss

0.030 A

0.025 A

0.020 A

0.015 A

0.010 A

0.005 ~

Validation Losses (50 Experiments)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Train Performance

4500 houses (Simulated)

~5x improvement

MAE

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Validation Performance
500 houses (Simulated)

~4x improvement

MAE

(eXe]

@O 0®O O

model

baseline

0.0

model

baseline

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Test Performance
32 houses (Real-World)
~1.7x improvement

MAE

o
8

model baseline




Models: Disaggregation | Post Mortem

_____________________________________________________________

Austin Subset

New York Subset
(19 houses) (14 houses)
~ 2.2x Improvement ~ No Improvement

Test Performance
32 houses (Real-World)
~1.7x improvement

| i
1 1
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1
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Models: Disaggregation | Post Mortem

Austin Subset New York Subset i

model baseline model baseline , model baseline

1
' n Test Performance
| (19 houses) (14 houses) n 32 houses (Real-World)
| ~ 2.2x Improvement ~ No Improvement b ~1.7x improvement
! 1 \
1
! MAE MAE i MAE
1 I \
1
' 0.8 A 0.8 - i \ 08 -
= Why? ||
1 [ ] \
' 0.7 A 0.7 A Ly 07 A
| 5 Lo "
1 I \
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| ! \\
1
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1 05 0.5 ! 105 1
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1 0.4 A 0.4 1 | /0.4 1
1 1
! 1 1
! 1 1
! 1 1
' 0.3 A H 0.3 1 : ;03 A A
| ! ! 8
1 | I
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| 1 v
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! |
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Models: Disaggregation | Post Mortem

New York Subset
. - (14 houses)
Is NY underrepresented in training Data? No. ~ No Improvement
MAE
"] Why?
2500 0.7 1
[e]
2000 06 1
4
==
3 1500 o5{ ©
O
1000 0.4 A
500 0.3 1
0 0.2 1
CA[TX NY|AZ FL Nj MA PA IL MD CO OH NC MI NV GA VA CT WA UTMO TN LA WI SC AL '
in.state
0.1 1
0.0

model baseline



Models: Disaggregation | Post Mortem

NY data comes from primarily summer months ... N aaeey
~ No Improvement
MAE
city 0.8 -
I 2018-01-01 00:00:00-06 2018-12-31 23:45:00-06 . . ?
sk Validation | o7 - Why .
newyork 2019-05-0100:00:00-05 2019-10-31 23:45:00-05 (500)
0.6 1
0.40 ‘ > 05 1 o

,m\l il

0.4 A

A
030 l ’ ‘ l ”'I'ul 0.3 A
l hil 'Fl m ‘ [ l""’hl |h ]l‘ Y 0.2 - l;:l
0.25 l FN ! i o D

0.20

dayofyear model baseline



Models: Disaggregation | Post Mortem

Behind the meter batteries!

houseid:1240

0.0 A1

-0.5 A

_1.0 -

g = e

-2.5 1

—3.0 1

T T,

St

'Wf 2 ~'~

RO Sraroend

e ML

7

- net

— actuals

—— preds

100

200

300

400

500

600

0.8 1

0.7 A

0.6 A

0.5 A

0.4 A

0.3 A

0.2 A

0.1 A

0.0

New York Subset
(14 houses)
~ No Improvement

MAE

I

model baseline




Models: Disaggregation | Post Mortem

_____________________________________________________________

Austin Subset New York Subset

(19 houses) (14 houses)
~ 2.2x Improvement ~ No Improvement

: 1
\ 1
| 1
\ 1
[ |
! 1
| b
! MAE MAE :
! 1
1
' 0.8 A 0.8 - |
| ? |
| Why~ |
1 0.7 0.7 A !
! 1
| o |
| 0.6 0.6 - !
l :
! 1
i 0.5 1 0.5 1 ° !
1
| :
1 0.4 A 0.4 A |
1
i |
' 0.3 H 0.3 i
l :
! 1
0.2 1 0.2 - !
1 1
1
| ql - |
1 0.1 A 0.1 A by
: L
1 1
I 0.0 : - 0.0 - - i,’l
1
! model baseline model baseline v/
1

Test Performance
32 houses (Real-World)
~1.7x improvement

MAE

0

model baseline




Models: Disaggregation | Post Mortem

Some bad apples!

1.5 1

1.0

- N QF

ity

o.o: F{rwﬁr"ur\ Jr

-1.54 — net
- actuals
—2.01 — preds

0 200 400 600 800 1000 1200 1400

0.8 A

0.7 -

0.6 A

0.5 A

0.4 A

0.3 A

0.2 A

0.1 A

0.0

Austin Subset
(19 houses)
~ 2.2x Improvement

MAE

Why?

7

model baseline




Models: Disaggregation | Post Mortem

10°

104

103

102

10!

Training data not representative ...

Training

10°

Validation

0 10 20 30 40
Peak PV Penetration
(Max(PV) / Mean(Gross Load))

50

104

103

102

10t

10°

10 20 30 40
Peak PV Penetration
(Max(PV) / Mean(Gross Load))

50

103

102

10!

10°

Austin Subset

10 20 30 40
Peak PV Pen
(Max(PV) / Mean(Gross Load))

50

0.8 A

0.7 -

0.6 A

0.5 A

0.4 A

0.3 A

0.2 A

0.1 A

Austin Subset
(19 houses)
~ 2.2x Improvement

MAE

Why?

7

model baseline




Models: Disaggregation | Post Mortem

Noisy Data! o nouses)

ouseid: 7800 Example from Austin Subset ~ 2.2x Improvement
] : re::uals MAE
1.0 { — preds . ?
. L) I L) "1 Why"
iRla'als & alalalalns a2 n D
Nl I VoY ’ ; i l | |V 06 1
i f ' ‘ (| | |‘1'
A /Y ¥ ' b |
0 200 400 600 800 1000 1200 1400 -

Example from Training Data

3
0.3 1 {_}
2
1 0.2 1
0 %
0:1. H
-1
N \/ / \ \/ \ 0.0 T T
-3 hd - z model baseline

70200 70300 70400 70500 70600 70700 70800



Models: Disaggregation | Post Mortem

N o) | S D ata | Austin Subset (smoothed) Austin Subset (Original)
y = (19 houses) (19 houses)

. ~ (1.25)(2.2)x Improvement ~ 2.2x Improvement
houseid:2818
MAE MAE
© 0.5 1
g) 0.8 1 0.8 1
3 oo Why?
n
— 0.7 A 0.7 A
g -0.5
§7 —— net 0.6 1 0.6 A
= —-1.0 ~1 ——— actuals
O —— preds
: . . : - . . . 0.5 1 0.5 1
0 100 200 300 400 500 600 700
houseid:2818 J T J T
_ 0.50 0.4 0.4
©
c 025
0.3 1 0.3 1 -
-UQ)) 0.00 H {}
T 0.2 0.2
_GCJ -0.50 -
QS -075 4 0.1 A 0.1 - %
O — pet s *
E —-1.00 A - actuals M o
N 125 . . — Bins . ' . ' 0.0 0.0

0 100 200 300 400 500 600 700 model baseline model baseline



Models: Disaggregation | Possible Next Steps

Retain existing architecture and:

1)

4)
5)

Forcing Learned Behaviour: Weighted Loss, summer
season / low penetration examples.

Data Augmentation: add noise to training data ?
Feature Extraction: Convolutional / Pooling layers to
counteract high-frequency noise.

Ensemble of different window sizes.

Hindsight is 20/20: Bidirectional LSTM

Or try a different approach:

6)

Use physical model characterized by estimated
parameters (e.g. capacity, tilt/azimuth angle, shading,
soiling ... etc.). Use data to constantly update belief of
parameters.

Prediction
A A

Bidirectional LSTM

Signal History
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Utility
Smart Meters

Utility / 3rd Party
Weather Station

I
I
I
I
I
I g
© 1’ . System I . Utility
! & | Operations Ul I System
! 2 [ Operator
1| 8 §) :
2= !
I & Sy i . Utility
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: Inference Gross Load I
i I
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_________ -> 1 cee
I | > Data Mart 1 — | External
: 5 1 0 | Applications
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I o ? !
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i = R i Downstream
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| ° Integration ! Utility Systems
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[l Estimated



Smart I\/Ieter Net-Load Data Feeds

GridVue 1.0

e
[rse —

15-min Net—loai( GV Data

step L Services }

Utility
Smart Meters
Meter
Data Ingestion

These feeds happen every 15-mins.




Weather Data Extraction via Solcast AP

Utility / 3rd Party
Weather Station

GridVue 1.0

Y )
Smartmeter location GV Data ZIP/GPS

t Services
N

Cache

redis

Weather data
|7 data

SOLCAST

Weather
Data Ingestion

API Toolkit




Data Prediction Pipeline

GridVue 1.0

1 GV data services received inputs from
smartmeters.

Disaggregation

2 GV data services create ‘classification’
request to Kafka.

GV Data W Classification | o

Services J l
’ . Predi

kafka. —

A
Result_re

Disaggred

3 Classification model receives request from
Kafka and process classification request.

$ted PV

Result_record

4 If PV is detected, relay the input data to
‘disaggregation’ queue, otherwise, simply
relay the input data to ‘result_record’ queue.

Classification

5 Disaggregation model picks up request and

ation generate PV prediction output

Result
recorder

6 PV result and other data are being pushed
into the ‘result_record’ queue.

PostgreSQL

____________________________________ 7 Result recorder task records the final results
to SQL database.




Operational Planning Dashboards

GridVue 1.0

GV Data W

Services J

System
Operations Ul

|

PostgreSQL

System
Planning Ul
Data Mart [ )
oo
Real-Time ‘H- _l 1
Integration
L

Utility
System
Operator

Utility
System
Planner

External
Applications

Downstream
Utility Systems
(e.g. SCADA)



Data Requirements for Each Prediction

e

Attime T

Net-load

T-2days 192 frames
(sliding window)

Irradiance

T-2days 192 frames
(sliding window)

Net-load

T-1day 96 frames

Disaggregation

Model



Time Series Prediction
Sliding versus non-sliding windows

Net load / Irradiance: 192 frames (2 days)

AN

Net load / Irradiance: 192 frames (2 days)

AN

Net load: 96 frames (1 day)

N
T—'I{ \T
Net load %Drgmes (1 day)

g ~ g

Sliding window is expensive!
For classification model, we do not
expect customer will switch PV/Non-PV

within each day.

For new house prediction, skipped first
2 day of net-load and irradiance data.

Time

Time

Time

Time

Sliding window for
Disaggregation model

Non-sliding window for
Classification model




Technology Stacks

a N O N

Data Mining Model Building
e AWSS3 e AWS
e AWS Athena SageMaker
e AWS Glue e Jupyter
e Spark notebooks
e Custom python e Torch model
APIs and tools Archiver

o AN /




AWS Inference Infrastructure

GV Data service, GV Dashboards,
prediction pipeline workers

Custom USZip, Irradiance, SQL,
Redis connectors and pipeline
workers APls

.. ¥ P>
N S®LCAST
A 4 API Toolkit

&

, B kafka

R & 5

GV Model service

GV Model service

TorchServe ( )

TorchServe ( )

EC2 - csprod-infra-01

Type: m7i.8xlarge
e 32vCPU
e 128 GB RAM
e 300GB Storage

EC2 - csprod-mi-dis

Type: inf1.2xlarge
e 8vCPU
e 16GB RAM
e 100GB Storage

EC2 - csprod-mi-clf

Type: inf1.2xlarge
e 38VvCPU
e 16GB RAM
e 100GB Storage
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MVP Demo #1 - Real-Time
Prediction Pipeline




Smart Meter Simulator (SMS)

For every step, iterate the

step below

Current Net load step

Time series at time T

Data for a
house

The demo house data set includes 1
year of historical data. We pretend that
we got each step every 15 minutes
from a smartmeter. There is a total of
35K iterations!! Estimated prediction
time is around 22 mins. (Each
prediction takes around 38ms!!)

S it Met 192 steps of .
ma eter Irradiance steps
~—from 1-192 e redls

Simulator

HTTP POST request
to GV data services

A

A

192 steps of net-load
steps from T-192

96 steps of net-load

steps from T-1day PostgreSQL
GV Data Data
Services | > prediction
e pipeline
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Energy Analyst Dashboard

GridVue

Solar Insights

Select Date Select Location

2019-10-10 —> 2019-10-11 NY

Tompkins County

x 27 x 142

PV Statistics
State

State Peak Net Load Min Net Load Peak PV Generation Peak Gross Load Average Net Load Average PV Generation Average Gross Load Peak PV Penetration

NY 435.381 0 -0.929 6115.46 435.381 -0.616 3549.458 ]

County Peak Net Load Min Net Load Peak PV Generation Peak Gross Load Average Net Load Average PV Generation Average Gross Load Peak PV Penetration

Tompkins County 435.381 0 -5680.079 6115.46 435.381 -3107.082 3549.458 -1.6

Household

House Peak Net Load| Min Net Load Peak PV Generation Peak Gross Load Average Net Load Average PV Generation Average Gross Load Peak PV Penetration
27 4.45 13.223 0.056 4.506 -1.207 -1.334 0.127 0.012
142 1.024 5.31 0.025 1.049 -0.91 -2.704 1.794 0.024

Mean PV Penetration

-0.616

Mean PV Penetration
-0.616

Mean PV Penetration




Operator’s Live dashboard




AV AT RV AT AT
DRIRARIRAX
vstartavstans
RIRIRAR
AL
RIRAR
AL
BIRIR
RS
SR
SEAERE
4AVAV‘1AV
QL

SARAKAK
IAIAIAAS

Learn More
at GridVue.org




