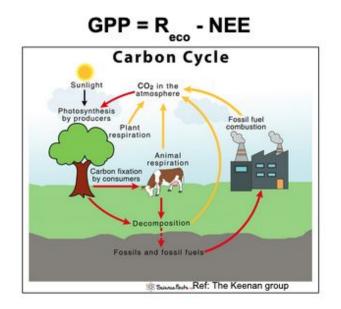
Temporal Prediction of Net Ecosystem Exchange (NEE) by Transformer Model

MIDS 2023 Spring - DATASCI 210 Sweta Bhattacharya Joshua Dunn Marcia (Yiying) Liu

Problem Statement

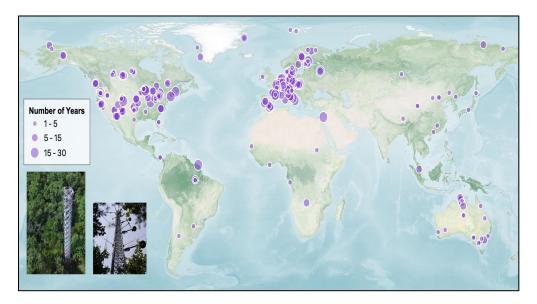
• Net ecosystem carbon exchange (*NEE*) measures the carbon interchanges between the Earth's biosphere and the atmosphere. The best result would be a negative value.

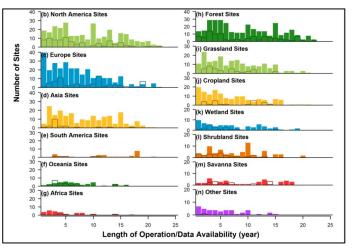
- Factors affecting carbon flux: Climate, vegetation, soil, etc.
- NEE derived from Eddy
 Covariance Measurements
- □ Sparse local measurements.
- Need improved models with better accuracy



Datasets - FluxNet

- Global distribution of FluxNet Eddy Covariance data
- Data source for target variables: GPP and NEE
- 276 sites worldwide from 2001-2020





Vegetation Groups by IGBP

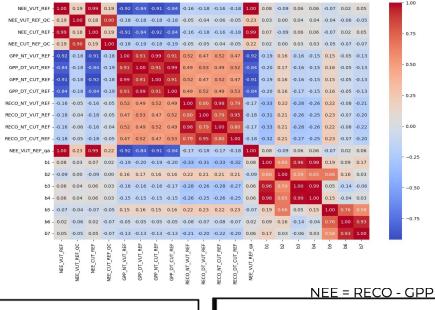
Forest: ENF, DBF, EBF, MF Grassland: GRA Cropland: CRO, CVM Wetland: WET Shrubland: OSH, CSH Savanna: SAV, WSA Other: BSV, URB, WAT, SNO

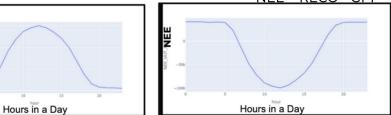
Correlation and Feature Selection

FluxNet data:

** NEE VUT REF - Target Variable GPP NT VUT REF RECO NT VUT REF RECO_DT_VUT REF **Climate data:** TA ERA (Temperature) P ERA (Precipitation) VPD ERA (Vapor Pressure) SW IN ERA (solar radiation) **Remote sensing data:** b1,b2,b3,b4,b5,b6,b7 NDVI FVI NIRv IGBP - Categorical Koppen – Categorical Site ID – Categorical

CPP





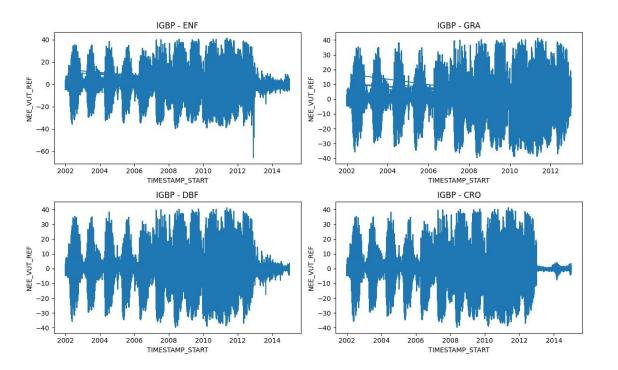
IGBP Schema (The International Geosphere–Biosphere Programme)

Evergreen Needleleaf Forests (ENF): 9,933,360 rows

Grasslands (GRA): 4,771,104 rows

Deciduous Broadleaf Forests (DBF): 4,312,512 rows

Croplands (CRO): 3,607,104 rows



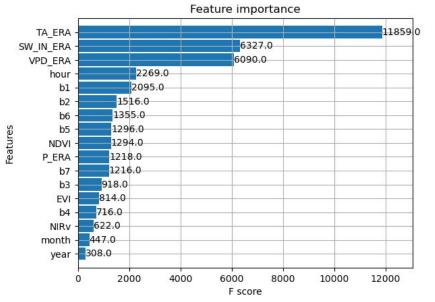
XGBoost Model

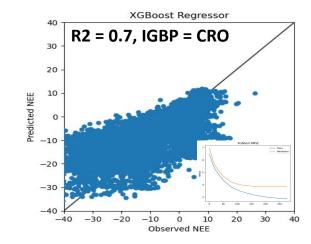
Baseline Model:

Training and validation Data: 80-20 split on Site Ids

TimeSeries Data Frequency: half-hourly

Evaluation Metrics: MAE, RMSE, and R²

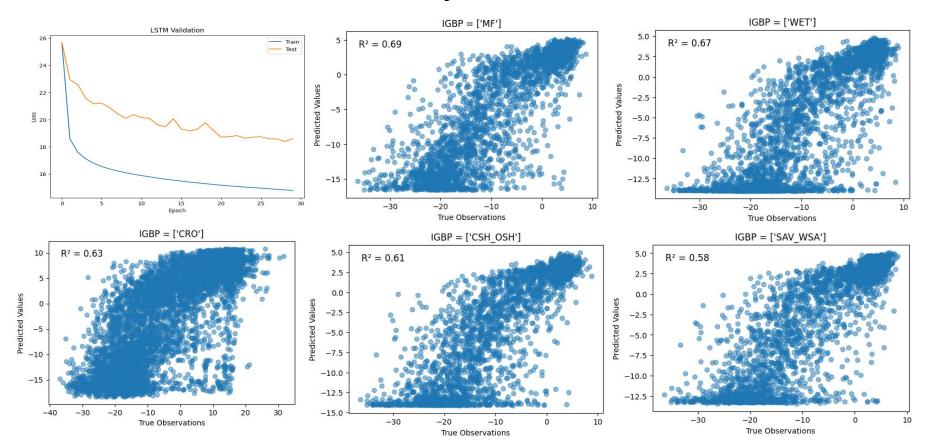




Current State-of-the-art		XGB	
12	DBF	0.80	1
5	EBF	0.58	
17	ENF	0.79	
4	MF	0.67	
15	GRA	0.57	
5	CRO	0.43	
2	OSH	0.27	
1	CSH	0.73	
4	SAV	0.61	
3	WSA	0.50	

Liu, J.; Zuo, Y.; Wang, N.; Yuan, F.; Zhu, X.; Zhang, L.; Zhang, J.; Sun, Y.; Guo, Z.; Guo, Y.; Song, X.; Song, C.; Xu, X. Comparative Analysis of Two Machine Learning Algorithms in Predicting Site-Level Net Ecosystem Exchange in Major Biomes. Remote Sens. 2021, 13, 2242. https://doi.org/10.3390/rs13122242

LSTM Model Performance by IGBP



Enter Temporal Fusion Transformer

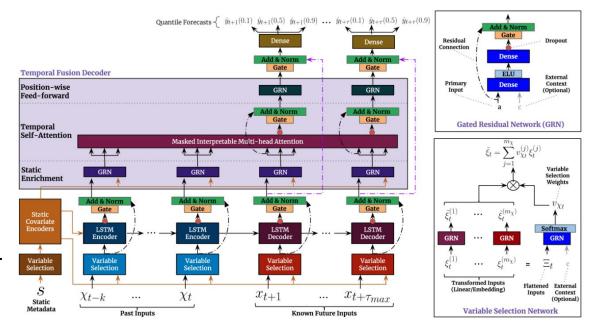
Temporal Fusion Transformer (TFT) is Google's state-of-the-art transformer model for series prediction.

We believed we might be able to achieve better results using a more modern architecture such as TFT.

Temporal Fusion Transformer (TFT)

- Multi-head Attention Layer
- LSTM Encoders/Decoders
- Variable Selection Network
- Gated Residual Network

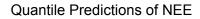
Produces series-to-series predictions.

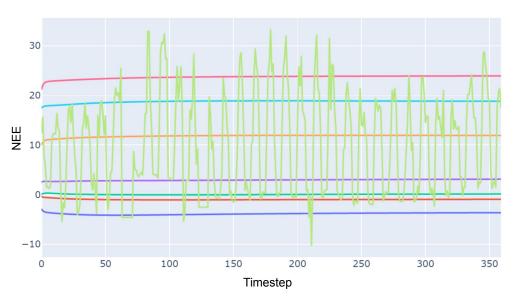


Initial TFT Model Development

The initial model was designed to provide:

- Long-term predictions
 - 1,440 half-hour predictions
- 6 NEE and GPP target predictions
- 7 quantile values per target
- Removing rows with missing values





But the results were pretty bad!

Final TFT Model Implementation

After much collaboration with the subject matter experts and our instructors, we pulled back on the scope of our model significantly.

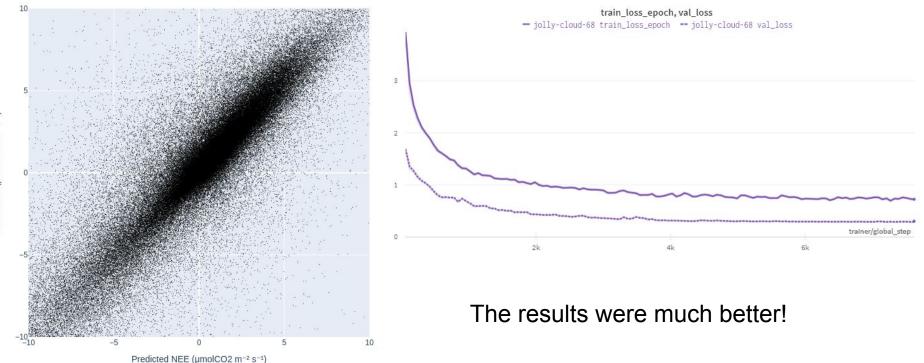
- The model now provides:
 - Only 1 variable prediction (NEE)
 - No quantile predictions
 - No long term prediction
 - Time horizon = 1 half-hour prediction
 - Forward-fill strategy on missing values

TFT Model Training Difference

The final model (purple) performed significantly better than all previous iterations.

TFT Model Performance - Overall

Net Ecosystem Exchange (NEE) | All Biomes | r2: 0.82



Actual NEE (µmolCO2 m⁻² s⁻

Model Performance Comparison

Scores for Spatial Prediction (train/test models split based on IGBPs)

IGBP	Number of Sites	Number of training samples	XGB - R²	LSTM - R ²	TFT - R ²
	Number of Ones	·			
MF (mixed Forest)	4	116,353	<mark>0.75</mark>	0.61	0.57
GRA (Grassland)	9	576,534	0.43	0.52	0.87
ENF (Evergreen Needle Leaf)	17	1,199,243	0.66	0.43	0.77
CRO (Croplands)	5	279,361	0.7	0.63	<mark>0.89</mark>
CSH, OSH (shrublands)	3	379,442	0.26	0.61	<mark>0.73</mark>
SAV, WSA (Savannah)	7	84,529	0.43	0.58	<mark>0.78</mark>
WET (Wetlands)	4	253,728	0.72	0.67	<mark>0.79</mark>
All Biomes			0.7		<mark>0.82</mark>

Discussion

• The TFT architecture performed the best and we suggest it as the new state-of-the-art for NEE prediction

- The multi-head attention layer is interprable and further work can explore the model's feature selection.
- The FluxNet data is geographically sparse in many continents and where present, is restricted to a very small radius of observation.
 - The TFT model can be extended through more work to predict NEE where flux tower data is not available.

Q & A

Thank You

