
 
1 

Refiberd Tag Reader 
Capstone Project Final Report, 2024 

Team Members: Abdullah Azhar, Mustafa Hameed, Erin Jones, Isidora Rollan & Prashant 
Sharma 
Date: May 3, 2024 
 

Abstract 
In collaboration with Refiberd, an early stage start-up in the climate technology space, our team 
built the Refiberd Tag Reader - a simple application to automate the capture of training data labels 
using machine learning. Refiberd has built an algorithm using computer vision in tandem with 
hyperspectral cameras to predict fabric compositions with >95% accuracy. To train their machine 
learning model, Refiberd must gather, take hyperspectral images of and capture the ground truth 
label for each fabric sample. The entire capture of their training dataset is currently done manually, 
taking precious time from their collaborators. Yet, one of their primary goals this calendar year is 
to increase the size of their training dataset from ~5,000 to ~20,000 images to further improve 
their accuracy. This is especially crucial for the algorithm’s ability to identify minority compositions 
that don’t occur regularly in their training dataset. Our solution aims to partially automate this 
process so it can be done by one person, reducing time spent recording sample labels. Though 
only a small part of the solution, our solution concomitantly supports Refiberd improving their 
accuracy, which is crucial to implementing their algorithm in the context of textile end-of-life. We 
succeeded in producing an MVP that will help Refiberd fight climate change - faster.  

I. Introduction 
Textile production is one of the most contaminating industries on the planet, contributing to 10% 
of global CO2 emissions annually. According to the European Environmental Agency, 16-35% of 
microplastics released into the oceans come from synthetic textiles.1 Moreover, less than 15% of 
used clothes and other textiles in the United States get reused or recycled. Once recycled, 80% 
of material is sorted, but less than 1% is recycled.2 One of the challenges of recycling textiles is 
their composition. Most of our clothes are made from more than one fiber (cotton, polyester, linen, 
wool, etc). Moreover, according to Refiberd, most clothing and other garment tags are inaccurate. 
For example, a t-shirt tag may say “100% cotton”, but it may have polyester threads sewing the 
different pieces together. This little detail can be crucial to deciding how to recycle it. Even in a 
simple garment, individuals often forget elements like stitching, logos and buttons that can render 
a garment ineligible for certain sustainable disposal mechanisms. Moreover, some garments can 

 
1 https://www.eea.europa.eu/publications/microplastics-from-textiles-towards-a 
2 https://www.nist.gov/news-events/news/2022/05/your-clothes-can-have-
afterlife#:~:text=Only%20about%2015%25%20of%20used,climate%20change%20and%20pollutes%20w
aterways. 
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contain as many as 50 different fibers. When a manufacturer wants to reuse a textile, it must be 
sorted, purified, and reprocessed to create a new product. Sorting is one of the biggest 
challenges. 
 
This huge gap in the industry motivated us to work on something that could help to solve this 
challenge, more specifically with computer vision techniques. The solution is non-trivial, especially 
when considering real world applications. Often fabric arriving at a recycling center may be 
damaged, wet, crumpled, etc. This renders most classification models developed from lab images 
or without a massive training dataset to be nearly useless. Additionally, as mentioned, the 
accuracy of such an algorithm has to be nearly perfect to effectively serve end-of-life facilities and 
recycling goals. As such, a hyperspectral camera that can capture more information that meets 
the eye is perfect for this task. Unfortunately, these cameras easily cost upwards of $50,000.  
 
After exploring the option of building a hyperspectral camera or finding access to one to build a 
dataset and train a model from scratch, our team began to explore other options due to time and 
budget constraints. Many early-stage startups are already sorting waste and recycling using 
computer vision and a small subset are specifically focused on sorting textiles accurately. With 
the objective of contributing to this real-world problem, we decided to partner with one of these 
startups as a means of a head start, such that we weren’t reinventing the wheel with inadequate 
time or resources. Initially, we were in contact with three companies: Sortile, based in New York 
City; Recycleye, based in London, UK; and Refiberd, based in Oakland, CA. All three use cutting-
edge computer vision technology to identify and sort materials at end of life. Two of the three were 
focused on identifying the fabric composition of a garment.  
 
After meeting with all three, we decided to continue with Refiberd. Introducing a partner into our 
capstone timeline could easily introduce entropy into our timeline and hamstring our ability to 
make an impact. The fact that Refiberd was located in Oakland helped to alleviate concerns 
related to partnering with an outside organization. The Refiberd Tag Reader came as a solution 
to streamline the process of labeling new training data so that Refiberd can continue to increase 
the accuracy of their machine learning model with less effort. We envisioned an end-to-end 
application that captures a photo using a mobile device, extracting necessary composition 
information from a textile sample tag in an automated fashion. Once the user confirms that the 
tag was read correctly, this information is saved in a database, overall reducing the time and effort 
needed to capture ground-truth for their dataset. The manual effort associated with this task is 
discussed in detail below. The front-end of the application is simple, as most of its process 
happens in the backend, where a model processes the image and interprets the results, and the 
backend saves this information in a database. Additionally, per client requirements, this app 
needed to be built using Amazon Web Services (AWS), to integrate appropriately with their 
organization’s infrastructure.  
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II. Refiberd 
Refiberd is a small start-up based in Oakland.3 It was founded by Sarika Bajaj and Tushita Gupta, 
who were eager to solve the global textile waste crisis. The problem of textile recycling has many 
steps, one of which is identification of a fabric’s composition in the context of sorting. This can 
help recycling plants sort and recycle correctly and help other companies identify garment 
composition. For this matter, Refiberd uses cutting-edge technology that leverages a 
hyperspectral camera to take a picture of a textile and a machine learning model that retrieves 
the exact composition of it. Hyperspectral imaging is an analytical technique based on 
spectroscopy that collects many images at different wavelengths for the same spatial area. Where 
the human eye sees three color channels, blue, green, and red, hyperspectral cameras aim to 
measure a near continuous spectrum of light and can have hundreds of channels. Each channel 
offers new information and thus improves model accuracy and generalizability. 
 

 
Figure 1 - Process to identify fabric composition.4 

 
As can be seen in Figure 1, the process is that the hyperspectral camera (1) captures lines of 
hyperspectral data from the moving textile at a predetermined frame rate and (2) the computer 
assembles these lines to form a hyperspectral cube. Finally (3) a machine learning model 
processes this cube and predicts the material composition.4 

III. Our Problem 
Building a machine learning model has its challenges. One of them is to have quality data to train 
the model and be able to fine-tune accordingly. In a universe where many natural and artificial 
fibers exist and infinite combinations of them are present in samples, training the Refiberd ML 

 
3 https://refiberd.com/ 
4 https://refiberd.com/technology/ 
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model is a big challenge. In order to do this, they search for reliable providers of fabrics from 
which they can trust that the fabric composition declared in the tag is true.  

Process 
Once they have these samples in their Oakland office, they follow these steps to log and capture 
the fabric sample (Table 1):  

1. Hand sort samples, quickly removing those with 
compositions not currently supported by their algorithm 
2. Hang them in a rack (figure 2) 
3. Add a sticker with a sample ID, which is currently 
handwritten 
4. Add the composition distribution to a Google 
spreadsheet.  
 
In the fourth step, two of four Refiberd employees are 
needed to log the label data. One reads the tags placed 
in the rack and says out loud the composition of the 
sample while the other writes it down in the Google 
spreadsheet. On average, this process from steps 2 
through 4 are estimated to take two workers 1.5 - 2 
minutes. 
 
With a team of four people, half must spend entire days 
to label all the samples they receive. Then, a third team 
member takes pictures of the labeled samples with the 
hyperspectral camera. When we visited them in 
February, Refiberd was aiming to to label and 

photograph 15,000 new samples (300% increase in training set size) to improve accuracy in their 
identification of fabrics. 
 

Person/Steps Step 1 - Sorting Step 2 - ID Step 3 - Labeling Step 4 - Auditing 

Person 1 Sort samples 
(from boxes) 

Paste sticker with a 
handwritten unique 
ID on tag 

Read out loud fabric 
composition from 
the tag 

 

Person 2 Hang them in 
racks 

Write ID in a new 
row on Google 
Sheet 

Write down person 
1’s dictation in a 
spreadsheet 

 

Person 3    Review the tag and 
the recorded 
results 

Table 1 - Current process for labeling new samples. 

Figure 2 - Samples placed on racks at 
Refiberd's Oakland office. 
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Tags 
The pictures shown in Figure 3 evidence the lack of standardized structure or method for naming 
and abbreviating fibers within the manufacturer’s textile tags. This adds an extra layer of 
complexity, even for the human eye. For example, an abbreviation of “T” is usually known as 
Tencel, but when the fabric comes from China, “T” is Polyester. Our algorithm would not only 
need to identify composition information from a slew of other information included across the tags, 
but it would need to identify and translate certain categories to match the classes needed by 
Refiberd (e.g. Tencel to Polyester).  
 

 
Figure 3 – Samples of tags; Note lack of standardization. 

Refiberd Requirements 
Refiberd asked us to find a way to automate the process of labeling new data, as we hoped to 
work on solving a problem for them that leveraged computer vision. In consultation with 
Refiberd, our team identified the following requirements:  
 

1. Capturing and labeling only requires one person. 
2. Should cloud technology be used, it must be hosted in AWS. 
3. The major goal relates to ensuring the process of capturing the label via the application 

is cheaper than having two individuals completing the labeling. 
a. Note: If the process time remains the same, but the labor requirements are 

reduced to a single person, the solution is still recognized as cheaper due to the 
saved labor cost associated with freeing up another person. 
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4. As implied by requirement 3, the end-to-end process should take at most 2 minutes per 
tag. 
 

We committed to delivering a minimum viable product to Refiberd by the end of our capstone 
project. 

IV. User Experience  
In crafting an end-to-end user experience that prioritizes simplicity and speed, we closely 
examined the requirements and the existing workflow for labeling new data. Our goal was to 
ensure that users can achieve their objectives with minimal distractions: capturing an image of 
the tag in landscape mode, reviewing the model's predictions, and saving their input. 
 
Optimal Workflow (Happy Path): The user logs in, captures an image, and confirms the fabric 
composition. This process is repeated smoothly until all samples in the batch are successfully 
processed. 
 
Less Ideal Workflow (Not So Happy Path): The user logs in and takes a photo. If the system 
encounters an error, the user may need to retake the photo and reconfirm the fabric composition 
before proceeding. 
 
Challenging Workflow (Unhappy Path): After logging in and taking a photo, the user must 
manually edit the information and confirm the changes if the model's prediction is incorrect. 
 
Our approach involved exploring various pathways to streamline the user’s interactions, ensuring 
they can complete their tasks efficiently and effectively, regardless of the path they encounter. 
We aimed to make the experience as intuitive as possible, reducing the need for extensive 
troubleshooting or intervention, thus accommodating all potential user scenarios. 
 
Figure 4 represents the end-to-end user experience design. This was created alongside several 
wireframes in Figma, which were all presented to Refiberd prior to diving into the application 
development.  
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Figure 4 - End-to-End User Experience Design. 

V. The Solution 

Architecture Overview + Introduction 
 
Much of the application, apart from the fine-tuned model itself, is hosted via Amazon Web 
Services (AWS), which was already in use by Refiberd. AWS hosts a suite of services that 
enabled the end-to-end creation of an application, powered by a machine learning model, without 
the need for any local hosting or deployment. This showcases the power of AWS as a service.  
 
Our team saw the opportunity to learn and deploy using AWS as one of the major learning 
opportunities encompassed by this project. Due to cost, cloud services such as AWS are not often 
taught in courses, but they are used widely across industry, presenting us with the opportunity to 
gain valuable insights on this platform. 
 
The finished architecture successfully hosts an application, which allows the user to take a picture 
of a fabric sample tag on their phone, send the picture to the model for processing, verify the 
composition produced by model output and save the results in a cloud database. The AWS 
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architecture, shown in the figure below, leverages a total of six AWS services and the Hugging 
Face hub (which hosts the machine learning model). 
 

 
Figure 5 - End-to-End Application Architecture. 

Front End and Amplify  
Amplify is an AWS service that allows users to build full-stack web and mobile apps. It also allows 
hosting for both production and development level deployments of the front end (Figure 6). 
Amplify seamlessly connects with other AWS services and features such as storage, 
authentication, and APIs, all of which can be instantiated from within the Amplify interface as part 
of the project. Additionally, while in test, it deploys a temporary webpage link, allowing us to try 
the web application on our phones and laptops without having the code repository and Amplify 
configured manually. 



 
9 

 
Figure 6 - How hosting with Amplify works.5 

An essential step when using any AWS service is to set up an IAM Role. This role carries a set 
of permissions that define what actions are allowed and denied for various AWS resources. After 
that, all the services that needs to be created for the Amplify project are managed through the 
Amplify CLI (terminal) and a local IDE for interacting with the react.js project. 
 
The process for creating, updating and deploying the front end on Amplify is as follows: 
 

1. Initialize the project: To start, we initialize the Amplify project with the amplify init 
command and authenticate with the IAM Role created for this project. Then, choose a 
programming language. In our case, we chose React.js. With this, the console 
automatically creates a basic React project with its default folders and files (similar to 
creating a project using node project manager). 
 

2. Develop React.js components: for this project, we focused on having the most simple 
and self-explanatory user-interface possible considering that it is an internal tool for 
Refiberd and the main goal was to reduce time spent on labeling new data. The 
application was only a portion of our capstone efforts, which also included solutioning, 
research, and model-fine tuning. As a result, the user experience consists of four simple 
steps that translate into six components: 

a. Main Page: after authentication, the user arrives to the home page which has a 
button to take a picture. 

b. Camera Page: this component opens the camera of the user’s device, asks for 
permission to access the camera, takes a picture, saves the image in S3, and calls 
the model API with the image storage metadata from the S3 bucket. 

c. Loader Page: an intermediate page when the model is working on the prediction 
showing a throbber. Its objective is to signal to the user that the App is processing 
the image and prevent them from double clicking and causing an error. 

d. Form Page: renders the model prediction results in a table and allows the user to 
edit as necessary. After user confirmation, Amplify calls the API that saves the 
labeled data into DynamoDB. 

 
5 https://aws.amazon.com/amplify/hosting/ 
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e. Success: signals to the user that the tag composition and image were saved 
successfully in the database. 

f. Header: a component is present in all the previous components as a menu banner. 
It has the Refiberd logo and a Sign Out button. 

3. Add additional features: AWS Amplify has additional built-in components that can 
reduce the coding necessary for the application. We took advantage of these by 
leveraging Amazon Cognito. This service adds a first authentication page (Sign in and 
Sign up) that can be easily managed in the AWS Cognito console. The benefit of this 
service is that allows us and, in the future, Refiberd, to control who is using the 
application, add and delete users, as well as other configurations such as mode of 
authentication (username, email, phone) and messages sent to the users (emails). 

 
Figure 7 - The front-end user flow. 

Back End - Passing Data and Returning Inference 
Connecting to a database  

 
We streamlined the connection between the user interface and our backend services using AWS 
Lambda and API Gateway. The process begins at the AWS Amplify powered front end, where 
once user confirmation of model results or completion of edits triggers a call to the backend API. 
These requests are routed through Amazon API Gateway, which act as a managed service 
making it easier to create, publish, maintain, monitor, and secure APIs at scale.6 

 
Once a request is received, API Gateway forwards it to the appropriate AWS Lambda function. 
Lambda offers a serverless compute service that lets you run code without provisioning or 

 
6 https://aws.amazon.com/api-gateway/ 
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managing servers.7 This flexibility is crucial for handling the varying load of API requests 
efficiently. 

 
The Lambda function processes the request, which often involves interacting with our database. 
For our data storage needs, we utilize AWS DynamoDB, a fast and flexible NoSQL database 
service for all applications that need consistent, single-digit millisecond latency at any scale. It's 
a fully managed database and supports both document and key-value store models.8 

 
In our specific use case, each request to the Lambda function involves saving data to DynamoDB. 
The database is structured to contain a table, with `sample_id` as partition key (primary key), 
where the table stores the percentages of materials confirmed by our human user. This setup not 
only allows for quick data storage but also ensures that our data management is scalable and 
secure, meeting the demands of our application's users effectively. The database also stores the 
composition information per requirements provided by Refiberd in addition to the location of the 
photo taken and stored in an S3 bucket for future access and auditing as needed. 
 

 
Figure 8 - Screenshot of database preview. 

 
By integrating these AWS services, we have created a robust backend architecture that supports 
the seamless operation of our application, ensuring efficient data flow from the front end all the 
way through to our database. 

Hosting the Model 
Custom Inference via Hugging Face and Amazon Sagemaker 
 
Per much research on industry best practices for integrating a machine learning model into the 
flow of a user application via AWS, we decided to build an inference endpoint on Amazon 
Sagemaker. Amazon SageMaker is “a fully managed machine learning (ML) service” which can 
be used to deploy machine learning models in a production environment.9 
 

 
7 https://aws.amazon.com/lambda/ 
8 https://aws.amazon.com/dynamodb/ 
9 https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html 
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Our model was hosted on Hugging Face as that was where it was fine-tuned. Fortunately, 
Sagemaker offers a connection to Hugging Face such that a public model can be called with no 
more than the model URL.10  
 
As with much of our AWS journey, what seemed to be simple, quickly became complicated. The 
AWS documentation proved to often be out of date and sent us searching in circles. Debugging 
in a fully-managed environment took getting comfortable with the AWS logging console and 
understanding where and how to place print statements and other tracking indicators to find bugs. 
Furthermore, deploying our model proved more complicated than simply using the auto-generated 
AWS deployment script available for our model on Hugging Face. 
 
The way the model is currently deployed leverages use of AWS pre-built, hosted, deep-learning 
container images11 that accommodate the Hugging Face transformers and PyTorch libraries 
needed to run the inference script. Sagemaker supports the deployment of custom inference 
models via inference script, stored using particular scripting conventions and file structures in 
Amazon S3 via tar archive. We experienced significant difficulty related to slight differences 
between documentation regarding overriding the HuggingFaceHandler service12 and the AWS 
documentation for hosting a custom inference script13. By combining approaches, we were able 
to create a custom inference script that runs the majority of the pre-processing when passed an 
image.  
 
The script imports necessary transformers and the PyTorch, which in turn allows us to instantiate 
both the processor and the model. Images passed to the endpoint in .jpg format are pre-treated, 
tokenized and sent to the model hosted on Hugging Face for predictions. Predictions are returned 
in JSON format by the endpoint. The inference script contains model, input, predict and output 
functions, per AWS requirements. The scripts and a requirements file are compressed into a 
tar.gz file, which is then stored in an Amazon S3 bucket. The bucket functions much like Google 
Drive, storing unstructured files and assigning them both a URI and URL for easy access within 
the AWS environment. 
 
With the custom inference script stored in S3, first the necessary IAM permissions must be set up 
such that the S3 bucket and Amazon Sagemaker can communicate with each other (i.e. files on 
S3 can be accessed from within Sagemaker studio). Once permissions are set up, a notebook 
can be opened in a JupyterLab instance, hosted on Sagemaker studio. Via boto3, Amazon’s 
software development kit for Python, and the connector between Hugging Face and Sagemaker, 
both the model and the appropriate endpoint can be created from within the notebook. 
 

 
10 https://huggingface.co/docs/sagemaker/en/index 
11 https://github.com/aws/deep-learning-containers/blob/master/available_images.md 
12 https://github.com/aws/sagemaker-huggingface-inference-toolkit 
13 https://docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms-inference-main.html 
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Figure 9 - Model creation. 

 
Figure 10 - Endpoint Creation 

 
Once both the model and endpoint are created, boto3 can be used to instantiate a Sagemaker 
runtime and invoke the endpoint from a python script, passing in the jpg input to receive an 
output. 
 
Invoking the Model Endpoint via API 
 
Once the endpoint is created, an API is needed to access the endpoint from the front end. API 
access to the Sagemaker endpoint allows for control of access to the endpoint, as invocations 
of the endpoint are charged per request and must be protected with the necessary safety 
precautions. 
 
Again, the development of this pipeline proved more difficult than expected, as documentation 
often proved out-of-date.14 AWS hosts a service called API gateway which allows for the easy 
creation of API endpoints, which can be directly integrated with a Lambda function on AWS 
Lambda. Lambda offers a method of hosting a script in any language that runs in response to 

 
14 https://aws.amazon.com/blogs/machine-learning/call-an-amazon-sagemaker-model-endpoint-using-
amazon-api-gateway-and-aws-lambda/ 
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an action, as opposed to being hosted and incurring cost via EC2 instance.15 The user interface 
for  
 
Lambda initially made this appear to be incredibly simple and low-code, with the only code 
written corresponding to the Lambda script that invoked the Sagemaker endpoint. Necessary 
IAM access had to be set up such that the front end could hit the API Gateway, which could in 
turn access the Lambda function and the Lambda function could access Sagemaker 
accordingly. The issue came as the JPG files being sent as a blob proved to be too large. The 
images themselves were under the 6MB payload limit imposed by Lambda, however API 
Gateway turns the images into byte strings and passes them with headers per cross-origin 
resource sharing (CORS)16 and HTTP protocol, which quickly inflated the size of the binary 
encoded image. 
 
Fortunately, many-a-developer has faced similar challenges and we quickly found workarounds 
to our problem. If an image is hosted in S3, as opposed to being passed via payload, the 
payload limit can be bypassed, as the Lambda function simply accesses the JPG image directly 
using its unique S3 resource address.17 While Lambda enforces data processing limits, the size 
of the image being pulled from S3 was well below that limit and the payload would solely contain 
the name of the S3 bucket and the desired image address. 
 
This change in architecture proved necessary, however it also serendipitously allowed us to 
store the images being taken on the front end to allow for future spot checks and audits. The 
front-end architecture was modified to pass the image to an S3 bucket, assigning it an address 
based on a unique ID generated according to the timestamp at which it was taken. The front 
end then awaits confirmation of storage, at which point it calls the API passing in the image 
address and S3 bucket name. This information travels through the API hosted on API gateway, 
activating the Lambda function, which plugs it into the Sagemaker endpoint. The endpoint 
passes back a JSON, which is packaged within the appropriate headers to meet CORS 
protocol.18 This JSON payload makes its way through the API gateway and returns as a 
response within the Amplify front end. 
 
The inference takes a few seconds, which is a source of latency in the application. A throbber 
was added to the user interface to prevent the user from clicking multiple times while inference 
is occuring, as this causes an error.  
 
Learnings from Hosting the Model 
 
If we were to go back in time and design our architecture from the ground up, it could have been 
wise to fine-tune the model within the Sagemaker environment, for the purposes of ease of 

 
15 https://aws.amazon.com/lambda/ 
16 https://docs.aws.amazon.com/AmazonS3/latest/userguide/cors.html 
17 https://theburningmonk.com/2020/04/hit-the-6mb-lambda-payload-limit-heres-what-you-can-
do/#:~:text=AWS%20Lambda%20has%20a%206MB,his%20cat%20to%20your%20app. 
18 https://docs.aws.amazon.com/lambda/latest/api/API_Cors.html 
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integration. However, Sagemaker was by far the most expensive service used by our team, with 
the use of their Sagemaker Studio Domain, from which JupyterHub can be accessed, 
constituting the bulk of our cost. Hugging Face allowed us to fine-tune our model for free and 
did not incur any cost during the process. 
 
Though Sagemaker is expensive, it is incredibly powerful and backed by a wide array of docker 
containers and images which allow flexibility and relative ease when compared to hosting a 
machine learning model locally. 
 
If we had additional time, it would likely be in our interest to better understand methods to 
reduce latency at the point of inference. 

Reality of Deployment + Recommendations 
Pricing 
Given our current workflow, where users let the AI make a prediction and then confirm or edit the 
predictions, and considering the possibility of a new workflow that allows for batch processing of 
multiple photos, we need to explore cost optimization strategies that enhance both setups. Here's 
a more comprehensive approach that includes optimizations for our existing workflow as well as 
potential changes: 
 
Optimizing Costs in Current Workflow 
 

• Right-Size SageMaker Instances: We must ensure that the instances powering our 
SageMaker models are optimally configured. This involves selecting instance types that 
accurately meet our computational needs without over-provisioning, thus avoiding 
excessive costs. Regular reviews of instance performance and cost will help us determine 
if we can switch to a more cost-effective instance type without compromising on 
performance. 

 
• Model Optimization: Enhancing the efficiency of our model can lead to quicker 

predictions and reduced computational demands. This might involve simplifying the model 
architecture, optimizing the inference code, or implementing techniques like model pruning 
or quantization. Efficient models use less compute time per prediction, directly translating 
into lower costs. 
 

• Cost Monitoring and Alerts: Implement detailed monitoring with tools like AWS Cost 
Explorer to keep a continuous check on where costs are being incurred and identify 
potential savings. Set up budget alerts to proactively manage costs and avoid surprises in 
your AWS bill. 

 
• Proposed Workflow Change: We can adjust our workflow to allow users to take multiple 

photos, submit them simultaneously, and then receive multiple predictions through batch 
processing. This approach would enable users to confirm the accuracy of each prediction 
one by one after all predictions have been made. This change would leverage batch 
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processing, which can be more cost-efficient compared to processing each request 
individually in real-time. 

 
Benefits of the New Workflow 
 

• Batch Processing: By grouping multiple prediction requests together, we can make more 
efficient use of our computational resources. Batch processing reduces the overhead of 
starting up and tearing down processes for individual predictions, thus lowering costs. We 
can schedule these batch processes during off-peak hours or when spot instance prices 
are lower, maximizing cost savings. 

 
• Utilization of Spot Instances19: With batch processing in place, we can utilize Spot 

Instances to handle our prediction workloads. Since batch processes can tolerate some 
interruption and do not require immediate real-time processing, Spot Instances become a 
viable option. Spot instance enables 90% cost saving compared to on-demand services. 
Spot Instances are less reliable in terms of availability, but since our batch processing 
does not demand immediate execution, we can design our system to handle interruptions 
gracefully. 

 
 
Possible security concerns 
 
Since the web application is hosted in Amplify, there are many configurations for security that can 
be configured through AWS console. Overall, however, cross-origin resource sharing protocol 
and the centralized nature of AWS makes ensuring security easy for the development team. As 
long as the IAM and ARN IDs are not exposed in any part of the application, the SOC2 certification 
and AWS’s rigorous security measures largely outsource security beyond a handful of parameters 
defined by the user. The architecture is technically bound by Amazon’s shared responsibility 
model20, so the following represent areas we had to configure and consider throughout the 
development process: 
 

- Identity and Access Management: The Amplify owner controls the policies of who can 
access the application and which services can communicate internally. Policies are 
attached to users which can be associated with developers or the services themselves. 
AWS evaluates the policies when a principal (user, root user, or role session) makes a 
request and is responsible for ensuring this process of verification in their architecture is 
secure. All the permissions policies are stored in AWS in JSON format. These policies 
and roles had to be set up and configured every step of the way and we followed the 
principle of least privilege21 to ensure roles were only given the permissions necessary to 
enable the application to function. It is also critical that these IDs and ARN numbers do 

 
19 https://aws.amazon.com/ec2/spot/ 
20 https://aws.amazon.com/compliance/shared-responsibility-model/ 
21 https://csrc.nist.gov/glossary/term/least_privilege 
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not exist in public format anywhere, otherwise the permissions associated with the ID can 
be used by anyone with access. 

- Data Protection: AWS is responsible for protecting the global infrastructure and maintains 
control over data hosted on it. In our case, we are using Encryption at Rest, that is 
managed by Amazon CloudFront. This service uses SSDs encryption.22 

- Security best practices: at the moment of this report, the web application is hosted in 
the default amplifyapp.com domain. When delivering to Refiberd, we are going to transfer 
it to Refiberd domain and use cookies with a __Host- prefix as recommended.23 

- Image Encryption: The images of the labels represent ground truth, but do not represent 
the intellectual property of the client, as they are not hyperspectral images of the fabric 
swatches themselves. As a result, this data is not encrypted prior to being sent to S3. 

- Docker Images: There are minor concerns related to the use of a publicly hosted deep 
learning container, however this architecture is protected by shared responsibility on the 
part of AWS.24  

- Cross-Origin Resource Sharing Enablement: For the APIs built on API Gateway, cross-
origin resource sharing is enabled as a method of increasing security when data is being 
passed across services existing on different services within AWS. 

The Model 
In traditional image-to-text captioning approaches, the typical workflow involves utilizing off-the-
shelf Optical Character Recognition (OCR) engines to extract text, followed by the application of 
natural language processing techniques. These techniques often range from regular expressions 
to decoder-only large language models like GPT, which predict the subsequent tokens. However, 
in our study, we opted for a more innovative approach by adopting and fine-tuning the OCR-Free 
Document Understanding Transformer, a pioneering method introduced by kim2022 et al.25 This 
model stands out by employing a transformer-only architecture, which notably reduces 
computation costs due to its reliance on a relatively modest 220M parameter model. As depicted 
in Figure 6, the Donut model incorporates a Swin Transformer as its backbone to serve as the 
encoder, paired with a BART decoder. It's important to emphasize that this figure primarily 
illustrates the structural framework of the model; we encourage readers to consult the original 
publication for a comprehensive understanding of its full capabilities. 

In alignment with our focus on document analysis, we utilized a pretrained model available on 
Hugging Face and proceeded to fine-tune this model on a self collected dataset. This dataset was 
collected at Refiberd’s facility and preprocessed as described below.  

 
22 https://docs.aws.amazon.com/amplify/latest/userguide/encryption-at-rest.html 
23 https://docs.aws.amazon.com/amplify/latest/userguide/security-best-practices.html 
24 https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/security.html 
25 https://doi.org/10.48550/arXiv.2111.15664 
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Figure 11 - Model Architecture and backbone. 

Data Preprocessing: 

Since our approach relied on fine-tuning a multi-modal transformer model with no reliance on a 
conventional OCR engine, our goal was to collect the highest resolution dataset at source and 
experiment with multiple preprocessing techniques to achieve the optimal model performance. 
Thus, we collected the images in raw form which accounted for a 20 GB dataset. However, due 
to compute constraints, both in terms of system ram and GPU compute, we downsampled the 
images from 4032x3024 pixels to 1280x960 pixels. Additionally, since we were leveraging the 
Hugging Face hub for downloading the model and its processor including tokenizer, we converted 
the raw dataset into .jpeg form and created a HuggingFace Image Dataset object 26 that uses the 
Apache Arrow format to store data in a columnar memory layout while ensuring efficient memory 

 
26 https://huggingface.co/docs/hub/en/datasets-image 

https://huggingface.co/docs/hub/en/datasets-image
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mapping. Additionally, we uploaded this dataset on the HuggingFace hub (as a private dataset) 
to be shared with Refiberd’s team for future purposes. Our dataset split is shown as follows: 

Train Set 469 

Validation Set 119 

Test Set 66 
Table 2 - Dataset split. 

Model Setup: 

The initial step in preparing our pipeline was to load both the model (with pre-trained checkpoints) 
and the corresponding processor including tokenizer from the Hugging Face hub. Next, we 
adjusted the image dimensions to 1280x960 which required altering the encoder image size 
configuration. Furthermore, the token sequence length was also increased from 20 to 768. The 
process of fine-tuning drew heavily from the steps and methodologies outlined in the 
documentation released by Hugging Face 27. To utilize the model’s image-to-text captioning 
capabilities, the images were then converted into pixel values using the encoder processor while 
including random padding to bolster the model’s robustness during inference time. Additionally, 
since our fine-tuning paradigm required next-word token prediction, we incorporated the fabric 
composition types such as cotton, nylon, polyester etc. as special tokens thereby increasing the 
decoder’s vocabulary by an additional 30 tokens. This step proved pivotal in obtaining the desired 
accuracy downstream as we didn’t want the model to split these words into sub-tokens thereby 
rendering the process of predicting fabric compositions for these tokens futile. Complete details 
regarding this setup and architecture, including all adjustments and configurations, are 
documented and accessed through our GitHub repository link 28. Additionally, we believe that this 
comprehensive resource which includes a custom defined PyTorch training loop might serve as 
a valuable resource for replicating and/or extending our project on other self-curated datasets out 
in the wild.  

Training Loop: 

Given the constraints on our compute power, we were unable to experiment with a comprehensive 
grid search approach to experiment with various hyper-parameter settings. Instead, we chose a 
handful of parameter configurations based on assessing the preliminary training results and 
assessed the training losses and validation accuracies per epoch. Primarily, we experimented 
with varying choices of learning rates and optimizers which are displayed in Table 1 below. Ideally, 
we wanted to experiment with varying batch sizes but were unable to train the model given our 
compute constraints, so we kept the batch size to 1.  

 
27 https://huggingface.co/docs/transformers/en/model_doc/donut 
28 https://github.com/azhara001/Fabric-Composition-Extraction 

https://huggingface.co/docs/transformers/en/model_doc/donut
https://github.com/azhara001/Fabric-Composition-Extraction


 
20 

Our experimental setup thus included six distinct configurations, each of which was run on an 
NVIDIA L4 Tensor Core GPU equipped with 22 GB of RAM with an average training duration of 
75 minutes per configuration for five epochs with validation accuracy measured per epoch.  

Configuration  Learning Rate Optimizer 

1 3e-5 Stochastic Gradient Descent 

2 3e-5 Stochastic Gradient Descent with Momentum  

3 3e-5 Adam  

4 3e-5 AdamW 

5 3e-4 Adam 

6 1e-5 Adam 
Table 3 - Hyperparameters Explored 

 
Loss Function and Evaluation Metric 
 
As the decoder architecture relies on next token prediction, we used the cross-entropy loss as 
our primary training metric. This involved extracting the output logits from the model’s last 
hidden states, with each token represented by a dimension of (1,768). These logits were then 
fed into a linear head culminating in an output size of (768, 56000) where 56000 represents the 
approximate size of the tokenizer’s vocabulary. Following this, we computed the argmax to 
identify and predict the token with the highest probability. This method proved effective, as 
evident from the significant and almost immediate reduction in training loss when using Adam 
and AdamW was our choice of optimizers in Figure 7. Overall, our loss curves regarding our 
choices of optimizers are intuitive where we observe that SGD does start to converge but takes 
a lot more time than SGD with momentum whereas the Adaptive choice of optimizers like Adam 
and AdamW converge to the same minima after 5 epochs. We also experimented with varying 
choices of learning rates and observed the model diverging after 1200 epochs for a higher 
learning rate of 3e-4.  Additionally, we were interested in exploring the potential of using cosine 
similarity loss which would have involved the conversion of ground truth tokens into 
embeddings. However, due to our compute constraints, we were unable to pursue experiments 
with alternative loss functions - a direction that we would wish to work on in the future.  
 
To effectively measure the performance of our model on both the validation and test sets, we 
sought an evaluation metric that could accurately reflect the precision required int he predicted 
sequence of tokens. Given our goal of achieving a 100% match in the next token sequence 
prediction, we chose to use the Levenshtein Distance as our primary metric. The Levenshtein 
distance quantifies the number of single-character edits (insertions, deletions, substitutions) 
required to change the predicted sequence into the ground truth label. Additionally, we 
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normalized this distance by the token length such that a value of 0 indicates a perfect match 
whereas an upper bound of 1 indicates no match at all. We can clearly see a direct relationship 
between the training loss and levenshtein score where SGD performs poorly during the 
validation stage.  
 
This approach to evaluation is reflected in our plotted validation accuracy shown in Figure 7, 
where the model demonstrates impressive performance. Although evaluating large language 
models (LLMs) remains an active area of research, utilizing the Levenshtein distance provided a 
robust starting point for our analyses. 

 
Figure 12 - Training Loop Results 

 
Model Performance on Test Set 
 
Following our fine-tuning paradigm on the multiple hyper-parameter settings as defined in table 
1, we chose a learning rate of 3e-5 with Adam as the optimizer to deploy the model on AWS 
SageMaker. Additionally, we also assessed the model performance on the test set and 
achieved impressive results given that our model was only fine-tuned on 569 train images only. 
The following table summarizes our model performance with inference performed on the final 
state of the trained model after five epochs for each of the four optimizer choices as 
hyperparameters.  
 

Optimizer  Samples with perfect match 
(Total Samples: 66) 

Average Normalized 
Levenshtein Score (0-1) 
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Stochastic Gradient Descent 
(SGD) 

0 0.95 

SGD with Momentum  13 0.03 

Adam  40 0.007 

AdamW 41 0.007 
Table 4 - Inference results on test set. 

While observing the results in Table 4, we decided to analyze the performance of the models on 
a sample from the test set and observe the model predictions for all the four models mentioned 
above. Figure-8 below shows the image as well as the predicted labels for each model. By 
observing the model prediction for SGD optimizer, we observe that the decoder is unable to 
capture the structure of the prediction sequence altogether which is reflected in the high 
Levenshtein distance. For SGD with momentum, we observe that the model is not only able to 
get the structure right but is also able to predict the sample id correctly. Adam gets the sample 
id and the cotton composition correct but is not able to predict the percentage of polyester 
(which is misspelled). Lastly, with AdamW, we observe a 100% match implying the model got all 
the sequence and compositions right. It should be noted that the misspelled fabric composition 
titles render this problem difficult to solve with a conventional OCR engine-based model since 
that would require fine-tuning a decoder LLM to predict next token based on these misspelled 
tags which is where our model is able to churn out impressive results.  
    

 
Figure 13 - Sample image for inference (see Table 5) 

Model Optimizer Levenshtein 
Distance 

Model Prediction 

SGD 0.93 'text_sequence': ' No No No No No No No 
No No No No No No No No No No No No 
No No No No No No No No No No No No 
No No No No No No No No No No No No 
No No No No No No No No No No No No 
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No No No No No No No No No No No No 
No No No No No No No No No No No No 
No No No No No No No No No No No No 
No No No No No No 08 08 08 08 08 08 08 

08 08 08 08 08 08 08 08 08 08 08 6553 
6503 65 65 6503 65 65 65 6503 65 65 65 

6503 
65.00000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000
00000000000000000000000000000000000

0000000000.000000000.00000'} 

SGD with momentum 0.02 {'sample_id': '6553.0', 'composition': 
{'polyester': 'None', 'elastane': 'None', 

'rayon': 'None', 'cotton': 'None', 'tencel': 
'None', 'nylon': 'None', 'viscose': 'None', 

'modal': 'None', 'nylon_6': 'None', 'nylon_66': 
'None', 'cupro': 'None', 'micromodal': 

'None'}} 

Adam 0.01 {'sample_id': '6553.0', 'composition': 
{'polyester': 'None', 'elastane': 'None', 
'rayon': 'None', 'cotton': '65.0', 'tencel': 

'None', 'nylon': 'None', 'viscose': 'None', 
'modal': 'None', 'nylon_6': 'None', 'nylon_66': 

'None', 'cupro': 'None', 'micromodal': 
'None'}} 

AdamW 0.00 {'sample_id': '6553.0', 'composition': 
{'polyester': '35.0', 'elastane': 'None', 'rayon': 

'None', 'cotton': '65.0', 'tencel': 'None', 
'nylon': 'None', 'viscose': 'None', 'modal': 

'None', 'nylon_6': 'None', 'nylon_66': 'None', 
'cupro': 'None', 'micromodal': 'None'}} 

Table 5 - Inference result on sample image (in Figure 13) 

VI. Closing remarks 
Throughout this project, our team learned new skills and refined knowledge from our studies at 
the School of Information. This project was a big challenge, not only because of the technical 
complexities, but also because we started very late as we shifted from a research paper to deliver 
a product for a company, only beginning on the application mid-February. As a result, however, 
we all have had the opportunity to work on an end-to-end cloud-based application that leverages 
machine learning which is an extremely valuable learning result.  
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AWS is a powerful platform that can help organizations easily manage different digital 
functionalities for their business, both with the client and internally. However, its complexities are 
non-trivial, and with all the available services and continuous improvements of the platform it was 
a challenge to understand what was important for our project and how to use it. Furthermore, the 
constant updates to AWS have resulted in a rat’s nest of documentation that at times felt like 
chasing a wild goose when we were debugging or problem solving. Fortunately, our team 
remained flexible and positive and as a result we learned tremendously from our experience. 
AWS is a widely-used tool and as such this experience provided us with many transferrable skills.  
 
Most importantly, we are delivering a product to a company that will help them reduce the time 
and headcount needed to label data correctly, expediting the time needed to improve model 
accuracy, which in-turn will impact deployment and adoption. The consensus across many climate 
technology enthusiasts and computational sustainability experts is that machine learning and 
information technologies will not be the star of the show when it comes to solving climate change. 
However, it will play an important role in expediting the availability of solution, winning an Oscar 
for best supporting actor in this context. Though the Refiberd tag reader is not directly related to 
solving the climate change challenge, it is a solution that will help Refiberd to be more efficient in 
the data gathering process so they can train their machine learning model quickly and effectively. 
It will help Refiberd solve the textile end-of-life problem - faster.  
 
 
 
 
 
 
 


