BABBLE BUDDY Online Speech Therapy - Phoneme Recognition

MIDS Capstone Project by Tyrnan Prasad, Derek Lee, Elena Xie

Agenda

2

4

Project Overview

Objective & Mission

3

Minimum Viable Product

MVP Process Flow MVP Demo

Technical Approach

Model development process Pretrained models Model evaluation User feedback generation

Closing Remarks

Summary of the project Roadmaps

Project Overview

Our objective and mission

Ideation & Objective

Problems we are solving

Balancing the growing demand with current supply shortfall in Speech-Language Pathologists (SLPs) shortage

Our objective

Introducing a digital tool for online speech therapy, ensuring accessibility and effectiveness in reaching children with speech disorders.

Mission Help every child speak with confidence

Product Usage

Welcome to Online Speech Therapy

Let's pick a sentence! 👇

Please read the sentence after clicking the 'Start Recording':
Refresh
See you later
Let's begin recording!

▶ 0:00 / 0:00

Support SLPs

Offers real time feedback on speech patterns, facilitating more efficient therapy sessions.

Support Parents

- Provide access to resources that can be conducted at home
- Enhancing continuity of care outside of traditional therapy session

Self-Management

Encourages independent learnings for teenagers

3 - 17 years old

Targeted Users

6 Million

Potential Market Size

Easy and Reliable

ls our key advantage

Minimum Viable Product

2

Let's look at the product

2

•

MVP Flow

Front End

Sentences appear on-screen. User can start recording

2

User clicks the 'Ready' button on the front end to submit a request for feedback

Visualizing feedback for user interpretation

Model process user recordings, generating sequence of phonemes

Back End

Feedback generation by comparing model prediction vs. correct phonemes

MVP DEMO

OUR PRODUCT

Our goal is to provide targeted support to speech therapy patients, particularly children struggling with articulation. Our product promises an effective therapy experience for our young patients, empowering them to overcome speech challenges with confidence.

Product Design

Our tool is easy to use. Simply record your voice by

read the sentence generated on the screen. Click ready to get feedback!

Key Values

Effortless accessibility Child friendly usage High educational standard

Information Security

No user information is stored Your privacy is our top priority

Visit our website here

01

Technical Approach

0

 $\odot \odot \odot$

3

Automatic Speech Recognition (ASR)

Traditional ASR: Predict word sequence given detected phonemes **Babble Buddy**: Classify pronunciation errors given detected phonemes and known word sequence

Project Dataset

About it

→ Sound files paired with phonetic transcriptions with timestamps

→ Adult american english speakers grouped by accent from 8 regional

	Utterances	Minutes of speech	
Train	4,620	137 mins	
Test	1,680	34 mins	

Things we did

- → Split DARPA-TIMIT data into discrete phonemes
- \rightarrow Recombined phonemes randomly
- \rightarrow Enforced class balance
- \rightarrow Incorporated data augmentation (noise adding, pitch shift)

Original dataset (DARPA-TIMIT Acoustic-Phonetic Continuous Speech Corpus)

Custom dataset (derived from DARPA-TIMIT)

Developing a Model for Babble Buddy

The Options:

Custom Model	Pre-trained Model		
Fit-for-purpose (phoneme recognition)	Trained for word recognition		
Lightweight (vocab size ~60 phonemes)	Large (vocab size ~100,000 words)		
Flexible	Fixed architecture, may not allow fine-tuning		
Large development effort required	Minimal development effort		

Encoder-Decoder Model Experiments & Results

Mel bands	Spectrogram Width	Dataset	n_fft	Length of Feature Vector / LSTM Units	Learning Curve (Loss)	Validation Accuracy
128	281	Custom	2048	256	Tan tan Tuan tan	0.453
64	281	Custom	2048	256	Tall 195	0.532
32	281	Custom	2048	256	The has been been been been been been been bee	0.460
64	374	Custom	2048	256	Tan isos Viladotin los 20 21 21 21 22 21 23 24 24 24 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	0.432
64	200	Custom	2048	256	Tan loss Wilding has	0.423
64	256	DARPA-TIMIT	2048	256	Tah kici Waliston Ions	0.701
64	256	DARPA-TIMIT	256	256	This loss bill bill bill bill bill bill bill bi	0.697
64	256	DARPA-TIMIT	256	128	Tabi bas Welderen bos u u u u u u u u u u u u u u u u u u u	0.700

Custom Model Challenges

Dataset Size

imited size

→DARPA TIMIT dataset is limited in size (4,620 training examples), which limits the model's ability to capture sufficient variability in the data.

 \rightarrow Larger datasets not freely available

Data Augmentation

→ Time and frequency masking are detrimental to model's ability to learning patterns, was removed

Padding

→ Accuracy scores included prediction on the "pad" token, leading to inflated accuracy (actual accuracy about 50% lower than reported if pad tokens accounted for)

Pretrained Model: Allosaurus

Allosaurus

- **Universal Phone Recognizer:** Pre-trained on 2+ million utterance from 14 languages
- Architecture: Similar to transitional ASR systems, tailored for universal application
- Feature Extraction: Waveform \rightarrow Open-Source Feature Extractor \rightarrow 40-dimensional MFCCs
- Encoder: MFCCs → 6-layer bidirectional LSTM → Universal phone prediction layer → Allophone prediction layer → Phoneme

Allosaurus reference: <u>https://arxiv.org/pdf/2002.11800.pdf</u> <u>https://github.com/xinjli/allosaurus</u>

Model Evaluation Metrics - BLEU

Baseline Dictionary Model

Allosaurus Model

0.456

Given a prompt sentence, assume that the correct phonetic transcription of the response will be the dictionary correct response

0.473

Reference tables used in BLEU:

- Mapping IPA phonetic symbol to Alphabets phonemes (ie. translation of diphthongs)
- Flattening of the phonemes (i.e.: tcl to t)

User Feedback

- Minimum Edit Distance algorithm assigns error to particular sounds •
- Flattening of sounds into larger categories
- Sounds correspond to words
- SLP defined error categories are individually labeled and returned

 \mathbf{A} 0 \square

Closing Remarks

Roadmaps

Key Learnings

- Phonemized Data produces patterned errors in trained models
- Context is relevant, rearrangement of sounds not viable strategy

Future Improvements

0 0

If more time and budget allowed:

- Dataset: Manually labelled dataset and a larger dataset
 - Engagement Enhancement: gamify the product to engage targeted audience

Help Every Child Speak with Confidence

Appendix 1: Audio Data 101

What is a phoneme?

- The smallest unit of speech sound distinguishing one word element from another.
- Model output

What is a spectrogram?

- A visual representation of the spectrum of frequencies in a sound.
- Model input

What is a waveform?

- Displays changes in a signal's amplitude over time.
- Not used in model but will display on MVP when user is recording

S sat	t tap	Ppan	n nose	mat	ant	e egg	i ink	O otter
9 goat	d dog	c k	r run	h hat	u up	ai rain	ee knee	igh
bus	f farm	l lolly	j jam	V van	oa boat	00 cook	00 boot	ar
Wish	X axe	y yell	Z zap	qu quill	or fork	ur burn	ow	oi boil
ch chin	sh	th think	th	ng	ear	air	ure	er

Appendix 2: Encoder-Decoder Model

