

Team Members

Tae Kim

Jeremy Lan

Michelle Lee

Mission Objective

Implement an crowd monitoring system using a network of security cameras to automatically detect and alert authorities in real-time when crowd densities approach potentially critical levels in any given node

What is a crowd crush?

Magnitude of the Problem
Root of the Issue

Our Stakeholders

6000+ injuries per year globally
Recent Crush Incidents (Deaths)

- 159 (South Korea, 2022)
- 135 (Indonesia, 2022)
- 2500 (Saudi Arabia, 2015)
- Insufficient Event Security
- Poor management and planning
- Inability to monitor and detect critical or near-critical situations
- Public Safety Officials
- Stadium Operators
- Law Enforcement

Case study: Seoul Halloween Crush 2022

Satellite © 2022 NAVER / SPOT / National Geographic Information Institute

- First concerned distress calls recorded at 6:34 PM
- Crowd crush occurred between 10:0810:20 PM
- Emergency services unable to reach victims until 11:45 PM

Plenty of time to alert authorities in advance to deploy security measures

Product description

Network of security cameras with edge computing units to detect and track pedestrian movement

Graph database tracking pedestrian movement across nodes

Web UI + Alert system to local authorities

Goal: Alert local authorities of potential danger before density reaches critical levels (7 people/m²)

Advantages over Status Quo

	Current	Crowdstop.AI
Source	- Concerned bystanders - Security personnel	Security camera network
Information	Eye estimates	- Exact number of people - Direction and magnitude of movement
Scalability	Limited by number of personnel	Potentially infinite given enough security cameras
Monitored area	Only at observed areas	Able to infer densities at unobserved areas

Data - SOMPT22

Model Training: SOMPT-22 Dataset

Dataset contains 14 "Scenes" consisting of video frames and a list of annotations

- Frame \#
- Person ID \#
- Bounding box
(x, y, width, height)

Total Dataset:

- 21k frames
- 800k annotations
- Average density: 37 people per image

Object Detection \& Tracking Model

Multiple Object Tracking

Video frames

Object detection
(e.g. YOLOv3)

Bounding box + classification

Bounding box + classification + object ID

Tracker Comparison

Centroid Tracker

Frame t-1

Frame t

IOU (Intersection over Union) Tracker

Model Performance Evaluator

MOTA (Multiple Object Tracking Accuracy)

- Overall tracking accuracy metric

MOTP (Multiple Object Tracking Precision)

- Spatial precision of object tracking, measuring how closely the tracked object's positions match the ground truth positions
- Avg distance between the centers of the two
- Lower value indicates higher tracking precision

$$
M O T A=1-\frac{\sum_{t} F N_{t}+F P_{t}+I D S_{t}}{\sum_{t} G T_{t}}
$$

Model Performance - ID Switches

- ID Switch: incorrectly changing the ID of a trajectory
- Left box: frames 4-5 where person A and B are not detected and result in ID switches in frame 6
- Right box: lose track of person after frame 3, later identifying the person with a new ID

Evaluation Metrics: Object Detection

Using the first 50 out of 1800 frames for a sample video

Detector	Tracker	MOTA	MOTP	IDF1	ID Switches	Recall	Precision
YOLO	IOUTracker	0.200	0.274	0.323	26	0.270	0.818
YOLO	CentroidTracker	0.192	0.267	0.296	49	0.270	0.818
YOLO	CentroidKF_Tracker	0.185	0.267	0.263	68	0.270	0.818
YOLO	SORT	0.199	0.267	0.316	29	0.270	0.818
TF_SSDMobileNetV2	IOUTracker	0.006	0.313	0.096	13	0.077	0.537
TF_SSDMobileNetV2	CentroidTracker	0.003	0.313	0.085	21	0.077	0.537
TF_SSDMobileNetV2	CentroidKF_Tracker	0.0003	0.313	0.081	28	0.077	0.537
TF_SSDMobileNetV2	SORT	0.007	0.313	0.100	10	0.077	0.537

QuadYOLO

Previously struggled with low YOLO sensitivity to identify lower-resolution / smaller objects

- Backgrounds of image vulnerable Enhance YOLO detection component:

1. Divide image into quadrants
2. Run YOLO detection to obtain bboxes
3. Concatenate bbox IDs across entire image
4. Object Tracking proceeds as normal

Improving detection: YOLO vs QuadYOLO

YOLO, IOUTracking

QuadYOLO, IOUTracking

QuadYOLO Evaluation Metrics

Using the first 50 out of 1800 frames for a sample video

| Image | Detector | Tracker | ID Switches | MOTA | MOTP | IDF1 | Recall | Precision |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Original | YOLO | IOUTracker | 26 | 0.200 | 0.274 | 0.323 | 0.270 | p.818 |
| Quadrant
 Splitting | YOLO | IOUTracker | 21 | 0.251 | 0.270 | 0.483 | 0.413 | @.728 |

Tracking Movement across Scenes

What counts as "movement"?

Implementation

- Zone boundaries manually configured
- Areas of interest / pathways
- JSON upload provides zone boundaries for each scene
- Each zone records change in pedestrian IDs over a time period

Zone-Linking Relevant Scenes

Scene 5

Scene 7

Zone-Linking Relevant Scenes

Scene 5

Scene 7

Multiple Object Tracking Pipeline Summary

Designing the Graph Database

How to represent info in Graph DB?

We start out with:
Each camera = node

Accumulation could happen in unobserved area
 A
 B

Need new node for unobserved areas

Observed and unobserved nodes

At each node, we track:

- Metadata: Unique ID, Name, Latitude \& Longitude, Walkable Area, Distance from Adjacent Nodes
- At Observed Nodes: People Count (direct from camera)

- At Unobserved Nodes: Predicted People

Count (inferred from crowd movement)

At each edge, we track movement of people from one node to another

System Design

Camera-side system design

Server-side design overview

API spec

PUT
 /camera/\{camera id\} Update Camera

Optimizing performance: Downsampling

Model Metrics

Frame Count Cadence	Recall	IDsw	Ground Truth	IDsw/GT
1	0.432	88	10839	0.81%
3	0.427	70	3627	1.93%
5	0.411	87	2167	4.01%
10	0.319	40	1085	3.7%

Front-end visualization \& UX

NeoDash Metrics

Density
$=\frac{\text { Number of People }}{\text { Area of Interest }}$

Area of Interest: $10 \mathrm{~m}^{2}$
Number of people: 12
Density: 1.2 people / m ${ }^{2}$

Velocity/Movement

$=$ Dictionary of movement across zones

NeoDash Visualization Features

- Holistic View Node Map: Observed + Unobserved Regions
$:$ Node Map Visualized κ^{π} :

NeoDash Visualization Features

- Population and Density Per Node (Observed)
- Population and Density Per Node (Aggregated with Nearby Unobserved Regions)

:: Population per node + Adjacent Nodes		2 :		: ${ }^{\text {a }}$ Node Density		:	
camera.name	PedestrianCount	totalPeopleCount	VithVelocity	CameralD	Density	Proj	tedDensity
Camera	20		34	Camera5	0.2		0.34
Camera 7	11		69	Camera7	0.02		0.124
Camera 8	19		38	Camera8	0.046		0.093
Camera15	29		56	Camera15	0.104		0.201
Camera16	24		51	Camera16	0.04		0.086
Camera25	29		45	Camera25	0.171		0.265
Camera26	24		53	Camera26	0.053		0.118
		1-7 of 7	< >			1-7 of 7	< >

NeoDash Visualization Features

- Nodes currently exceeding critical density threshold
- Nodes projected to exceed threshold in near future (accounting for adjacent nodes)
- Critical Thresholds can be set by user

Example alert message via AWS SNS

Crowdstop AI Alert Message $>$ Inbox x

(8)

Crowdstop.AI Density Alert no-reply@sns.amazonaws.com
to taekim -
Node ID b2842b12-56c8-4e1b-a3ea-eb6065921d38 has density 5.42 people/sqft, exceeding warn density threshold of 5 people/sqft.

If you wish to stop receiving notifications from this topic, please click or visit the link below to unsubscribe:
https://sns.us-east-1.amazonaws.com/unsubscribe.html?SubscriptionArn=arn:aws:sns:us-east-1:359045531401:crowdstop_ai_alerts:e0ecc887-ca6a-4eb5-add7-4d592e679079\&Endpoint=taekim@berkeley.edu

Please do not reply directly to this email. If you have any questions or comments regarding this email, please contact us at https://aws.amazon.com/support

Thank you!

Appendix

Density Calculation + Anomaly Detection

> Critical crowd density:
> 7 people per square meter

\# People Detected / Area within Frame

For each camera node:

- Area within Frame manually calculated (remove buildings, etc.)

Anomaly Detection:

- Does the Density approach critical density threshold?

What counts as "movement"?

Camera config files

Json file specific to each camera providing important metadata

- Name
- Longitude + latitude (determines uniqueness, used to generate UUID)
- Walkable surface area visible in frame in sqft
- Places the camera link to
- Place ID
- Zones in frame that link to place

