
CrowdStop.AI
Final Capstone PresentationTae Kim, Jeremy Lan, Michelle Lee

Team Members

Tae Kim Jeremy Lan Michelle Lee

Mission Objective

Implement an crowd monitoring system using a network of security
cameras to automatically detect and alert authorities in real-time when

crowd densities approach potentially critical levels in any given node

What is a crowd crush?

 Our Stakeholders

● Public Safety Officials

● Stadium Operators

● Law Enforcement

 Magnitude of the Problem

6000+ injuries per year globally

Recent Crush Incidents (Deaths)

● 159 (South Korea, 2022)

● 135 (Indonesia, 2022)

● 2500 (Saudi Arabia, 2015)

Root of the Issue

● Insufficient Event Security

● Poor management and
planning

● Inability to monitor and
detect critical or
near-critical situations

Case study: Seoul Halloween Crush 2022

Plenty of time to alert authorities in advance to deploy security measures

● First concerned distress calls recorded
at 6:34 PM

● Crowd crush occurred between 10:08 -
10:20 PM

● Emergency services unable to reach
victims until 11:45 PM

Product description

Network of security cameras with edge computing units to detect and
track pedestrian movement

Graph database tracking pedestrian movement across nodes

Web UI + Alert system to local authorities

Goal: Alert local authorities of potential danger before
density reaches critical levels (7 people/m2)

Advantages over Status Quo

Current Crowdstop.AI

Source ● Concerned bystanders
● Security personnel Security camera network

Information Eye estimates
● Exact number of people
● Direction and magnitude of

movement

Scalability Limited by number of personnel Potentially infinite given enough security
cameras

Monitored area Only at observed areas Able to infer densities at
unobserved areas

Data - SOMPT22

Model Training: SOMPT-22 Dataset

Dataset contains 14 “Scenes”
consisting of video frames and a list
of annotations

● Frame #
● Person ID #
● Bounding box

(x, y, width, height)

Total Dataset:

● 21k frames
● 800k annotations
● Average density: 37 people per

image

Object Detection & Tracking Model

Multiple Object Tracking

Video frames
Object detection

(e.g. YOLOv3)
Object tracking

(e.g. centroid tracking)

Bounding box +
classification

Bounding box + classification + object ID

Tracker Comparison

IOU (Intersection over Union) TrackerCentroid Tracker

Model Performance Evaluator

MOTA (Multiple Object Tracking Accuracy)
● Overall tracking accuracy metric

MOTP (Multiple Object Tracking Precision)
● Spatial precision of object tracking,

measuring how closely the tracked
object’s positions match the ground
truth positions

○ Avg distance between the
centers of the two

○ Lower value indicates higher
tracking precision

Model Performance - ID Switches

● ID Switch: incorrectly changing the ID of a trajectory
○ Left box: frames 4-5 where person A and B are not detected and

result in ID switches in frame 6
○ Right box: lose track of person after frame 3, later identifying the

person with a new ID

Evaluation Metrics: Object Detection
Using the first 50 out of 1800 frames for a sample video

Detector Tracker MOTA MOTP IDF1 ID Switches Recall Precision

YOLO IOUTracker 0.200 0.274 0.323 26 0.270 0.818

YOLO CentroidTracker 0.192 0.267 0.296 49 0.270 0.818

YOLO CentroidKF_Tracker 0.185 0.267 0.263 68 0.270 0.818

YOLO SORT 0.199 0.267 0.316 29 0.270 0.818

TF_SSDMobileNetV2 IOUTracker 0.006 0.313 0.096 13 0.077 0.537

TF_SSDMobileNetV2 CentroidTracker 0.003 0.313 0.085 21 0.077 0.537

TF_SSDMobileNetV2 CentroidKF_Tracker 0.0003 0.313 0.081 28 0.077 0.537

TF_SSDMobileNetV2 SORT 0.007 0.313 0.100 10 0.077 0.537

QuadYOLO

Previously struggled with low YOLO sensitivity
to identify lower-resolution / smaller objects

○ Backgrounds of image vulnerable

Enhance YOLO detection component:

1. Divide image into quadrants
2. Run YOLO detection to obtain bboxes
3. Concatenate bbox IDs across entire image
4. Object Tracking proceeds as normal

Improving detection: YOLO vs QuadYOLO

YOLO, IOUTracking QuadYOLO, IOUTracking

QuadYOLO Evaluation Metrics

Using the first 50 out of 1800 frames for a sample video

Image Detector Tracker ID Switches MOTA MOTP IDF1 Recall Precision

Original YOLO IOUTracker 26 0.200 0.274 0.323 0.270 0.818

Quadrant
Splitting

YOLO IOUTracker 21 0.251 0.270 0.483 0.413 0.728

Tracking Movement across Scenes

What counts as “movement”?

1

3

2

1 person

1 person

Model Output
{“Zone 1”: -1,
 “Zone 2”: -1,
 “Zone 3”: +2}

Implementation

1

3

2

1 person

1 person

Model Output
{“Zone 1”: -1,
 “Zone 2”: -1,
 “Zone 3”: +2}

● Zone boundaries manually configured
○ Areas of interest / pathways

● JSON upload provides zone boundaries
for each scene

● Each zone records change in pedestrian
IDs over a time period

Zone-Linking Relevant Scenes

Scene 5

Scene 7

Scene 8

Zone-Linking Relevant Scenes

Scene 5

Scene 7

Scene 8

Zone-Linking Relevant Scenes

Multiple Object Tracking Pipeline Summary

Pedestrian Calculations
Density and Movement

Object Tracking
IOU Tracker

Video Feed Resizing &
Quadrant Splitting

Upload to
GraphDBCamera

Node

Object Detection
QuadYOLO

Designing the Graph Database

How to represent info in Graph DB?

We start out with:
Each camera = node

A B

Accumulation could happen in unobserved area

Need new node for unobserved areas

A B

Observed and unobserved nodes

At each node, we track:

● Metadata: Unique ID, Name, Latitude & Longitude, Walkable Area, Distance from Adjacent Nodes
● At Observed Nodes: People Count

(direct from camera)
● At Unobserved Nodes: Predicted People

Count (inferred from crowd movement)

At each edge, we track movement of people from one node to another

System Design

Camera-side system design

Live video stream
(video file for POC)

MOT model

Edge computing unit
For each frame:

1. Filter for category == ”Person”
2. Calculate density within frame
3. Track movement

Every x frames, send updates to
server

Server

Server

Server-side design overview

web
● Update graph DB
● Infer neighboring nodes
● Publish alerts to SNS

Web UI via NeoDash

API spec

1

4

3

2

{
 "timestamp": "2023-10-31T21:19:15Z",
 "count": 50,
 "velocities": {
 "1": -30,
 "2": -50,
 "3": 40,
 "4": 50
 }
}

5050

30

40

Server
PUT /camera/12345

Camera ID: 12345

Positive velocity indicates movement towards the camera

Optimizing performance: Downsampling

Frame Count Cadence Recall IDsw Ground Truth IDsw/GT

1 0.432 88 10839 0.81%

3 0.427 70 3627 1.93%

5 0.411 87 2167 4.01%

10 0.319 40 1085 3.7%

Model Metrics

Front-end visualization & UX

NeoDash Metrics
Density
=

Velocity/Movement
= Dictionary of movement across zones

Area of Interest: 10 ㎡
Number of people: 12
Density: 1.2 people / ㎡

5m

2m

Zone 1

Zone 2

Zone 3

{“Zone 1”: -1,
 “Zone 2”: -1,
 “Zone 3”: +2}

NeoDash Visualization Features

● Holistic View Node Map: Observed + Unobserved Regions

NeoDash Visualization Features

● Population and Density Per Node (Observed)
● Population and Density Per Node (Aggregated with Nearby Unobserved Regions)

NeoDash Visualization Features

● Nodes currently exceeding critical density threshold
● Nodes projected to exceed threshold in near future (accounting for adjacent nodes)

○ Critical Thresholds can be set by user

Example alert message via AWS SNS

Thank you!

Appendix

Density Calculation + Anomaly Detection

Critical crowd density:
7 people per square meter

People Detected / Area within Frame

For each camera node:
- Area within Frame manually

calculated (remove buildings, etc.)

Anomaly Detection:
- Does the Density approach critical

density threshold?

What counts as “movement”?

Camera config files

Json file specific to each camera providing important metadata

● Name
● Longitude + latitude (determines uniqueness, used to generate UUID)
● Walkable surface area visible in frame in sqft
● Places the camera link to

○ Place ID
○ Zones in frame that link to place

