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Mission Objective

Implement an crowd monitoring system using a network of security 
cameras to automatically detect and alert authorities in real-time when 

crowd densities approach potentially critical levels in any given node



What is a crowd crush?

  Our Stakeholders

● Public Safety Officials

● Stadium Operators

● Law Enforcement

    Magnitude of the Problem

6000+ injuries per year globally 

Recent Crush Incidents (Deaths)

● 159 (South Korea, 2022)

● 135 (Indonesia, 2022)

● 2500 (Saudi Arabia, 2015)

Root of the Issue

● Insufficient Event Security

● Poor management and
planning

● Inability to monitor and 
detect critical or 
near-critical situations



Case study: Seoul Halloween Crush 2022 

Plenty of time to alert authorities in advance to deploy security measures

● First concerned distress calls recorded 
at 6:34 PM

● Crowd crush occurred between 10:08 - 
10:20 PM

● Emergency services unable to reach 
victims until 11:45 PM



Product description

Network of security cameras with edge computing units to detect and 
track pedestrian movement

Graph database tracking pedestrian movement across nodes

Web UI + Alert system to local authorities

Goal: Alert local authorities of potential danger before 
density reaches critical levels (7 people/m2)



Advantages over Status Quo

Current Crowdstop.AI

Source ● Concerned bystanders
● Security personnel Security camera network

Information Eye estimates
● Exact number of people
● Direction and magnitude of 

movement

Scalability Limited by number of personnel Potentially infinite given enough security 
cameras

Monitored area Only at observed areas Able to infer densities at 
unobserved areas



Data - SOMPT22



Model Training: SOMPT-22 Dataset

Dataset contains 14 “Scenes” 
consisting of video frames and a list 
of annotations

● Frame #
● Person ID #
● Bounding box

(x, y, width, height)

Total Dataset:

● 21k frames
● 800k annotations
● Average density: 37 people per 

image



Object Detection & Tracking Model



Multiple Object Tracking

Video frames
Object detection 

(e.g. YOLOv3)
Object tracking 

(e.g. centroid tracking)

Bounding box + 
classification

Bounding box + classification + object ID



Tracker Comparison

IOU (Intersection over Union) TrackerCentroid Tracker



Model Performance Evaluator

MOTA (Multiple Object Tracking Accuracy)
● Overall tracking accuracy metric

MOTP (Multiple Object Tracking Precision)
● Spatial precision of object tracking, 

measuring how closely the tracked 
object’s positions match the ground 
truth positions

○ Avg distance between the 
centers of the two

○ Lower value indicates higher 
tracking precision



Model Performance - ID Switches

● ID Switch: incorrectly changing the ID of a trajectory
○ Left box: frames 4-5 where person A and B are not detected and 

result in ID switches in frame 6
○ Right box: lose track of person after frame 3, later identifying the 

person with a new ID



Evaluation Metrics: Object Detection
Using the first 50 out of 1800 frames for a sample video

Detector Tracker MOTA MOTP IDF1 ID Switches Recall Precision

YOLO IOUTracker 0.200 0.274 0.323 26 0.270 0.818

YOLO CentroidTracker 0.192 0.267 0.296 49 0.270 0.818

YOLO CentroidKF_Tracker 0.185 0.267 0.263 68 0.270 0.818

YOLO SORT 0.199 0.267 0.316 29 0.270 0.818

TF_SSDMobileNetV2 IOUTracker 0.006 0.313 0.096 13 0.077 0.537

TF_SSDMobileNetV2 CentroidTracker 0.003 0.313 0.085 21 0.077 0.537

TF_SSDMobileNetV2 CentroidKF_Tracker 0.0003 0.313 0.081 28 0.077 0.537

TF_SSDMobileNetV2 SORT 0.007 0.313 0.100 10 0.077 0.537



QuadYOLO

Previously struggled with low YOLO sensitivity 
to identify lower-resolution / smaller objects

○ Backgrounds of image vulnerable

Enhance YOLO detection component:

1. Divide image into quadrants
2. Run YOLO detection to obtain bboxes
3. Concatenate bbox IDs across entire image
4. Object Tracking proceeds as normal



Improving detection: YOLO vs QuadYOLO

YOLO, IOUTracking QuadYOLO, IOUTracking



QuadYOLO Evaluation Metrics

Using the first 50 out of 1800 frames for a sample video

Image Detector Tracker ID Switches MOTA MOTP IDF1 Recall Precision

Original YOLO IOUTracker 26 0.200 0.274 0.323 0.270 0.818

Quadrant 
Splitting

YOLO IOUTracker 21 0.251 0.270 0.483 0.413 0.728



Tracking Movement across Scenes



What counts as “movement”?

1

3

2

1 person

1 person

Model Output
{“Zone 1”: -1,
 “Zone 2”: -1,
 “Zone 3”: +2}



Implementation

1

3

2

1 person

1 person

Model Output
{“Zone 1”: -1,
 “Zone 2”: -1,
 “Zone 3”: +2}

● Zone boundaries manually configured
○ Areas of interest / pathways

●  JSON upload provides zone boundaries 
for each scene 

● Each zone records change in pedestrian 
IDs over a time period 



Zone-Linking Relevant Scenes 

Scene 5

Scene 7

Scene 8



Zone-Linking Relevant Scenes 

Scene 5

Scene 7

Scene 8

Zone-Linking Relevant Scenes 



Multiple Object Tracking Pipeline Summary

Pedestrian Calculations
Density and Movement

Object Tracking
IOU Tracker

Video Feed Resizing & 
Quadrant Splitting

Upload to 
GraphDBCamera 

Node

Object Detection
QuadYOLO 



Designing the Graph Database



How to represent info in Graph DB?

We start out with:
Each camera = node

A B



Accumulation could happen in unobserved area

Need new node for unobserved areas

A B



Observed and unobserved nodes

At each node, we track:

● Metadata: Unique ID, Name, Latitude & Longitude, Walkable Area, Distance from Adjacent Nodes
● At Observed Nodes: People Count 

(direct from camera)
● At Unobserved Nodes: Predicted People 

Count (inferred from crowd movement)

At each edge, we track movement of people from one node to another 



System Design



Camera-side system design

Live video stream
(video file for POC)

MOT model

Edge computing unit
For each frame:

1. Filter for category == ”Person”
2. Calculate density within frame
3. Track movement

Every x frames, send updates to 
server

Server



Server

Server-side design overview

web
● Update graph DB
● Infer neighboring nodes
● Publish alerts to SNS

Web UI via NeoDash



API spec

1

4

3

2

{
  "timestamp": "2023-10-31T21:19:15Z",
  "count": 50,
  "velocities": {
    "1": -30,
    "2": -50,
    "3": 40,
    "4": 50
  }
}

5050

30

40

Server
PUT /camera/12345

Camera ID: 12345

Positive velocity indicates movement towards the camera



Optimizing performance: Downsampling

Frame Count Cadence Recall IDsw Ground Truth IDsw/GT

1 0.432 88 10839 0.81%

3 0.427 70 3627 1.93%

5 0.411 87 2167 4.01%

10 0.319 40 1085 3.7%

Model Metrics



Front-end visualization & UX



NeoDash Metrics
Density
= 

Velocity/Movement
= Dictionary of movement across zones

Area of Interest: 10 ㎡
Number of people: 12
Density:  1.2 people / ㎡

5m

2m

Zone 1

Zone 2

Zone 3

{“Zone 1”: -1,
 “Zone 2”: -1,
 “Zone 3”: +2}



NeoDash Visualization Features

● Holistic View Node Map: Observed + Unobserved Regions



NeoDash Visualization Features

● Population and Density Per Node (Observed)
● Population and Density Per Node (Aggregated with Nearby Unobserved Regions)



NeoDash Visualization Features

● Nodes currently exceeding critical density threshold
● Nodes projected to exceed threshold in near future (accounting for adjacent nodes)

○ Critical Thresholds can be set by user 



Example alert message via AWS SNS



Thank you!



Appendix



Density Calculation + Anomaly Detection

Critical crowd density:
7 people per square meter

# People Detected / Area within Frame

For each camera node:
- Area within Frame manually 

calculated (remove buildings, etc.)

Anomaly Detection:
- Does the Density approach critical 

density threshold? 



What counts as “movement”?



Camera config files

Json file specific to each camera providing important metadata

● Name
● Longitude + latitude (determines uniqueness, used to generate UUID)
● Walkable surface area visible in frame in sqft
● Places the camera link to

○ Place ID
○ Zones in frame that link to place


