Amazon Review Sentinel

Raymond Fang Morgan Yung Joy Jiang

Project Overview

- Customer Feedback is pivotal in \star influencing purchasing decisions
- High volume & unstructured data \star leads to inefficient processing of data.
- Seeking to leverage Data Science \star to automate and enhance the

process

Target User

★ Sellers: Streamline process of extracting insights from customer reviews **Buyers**: Provide resources to \star enhance overall purchasing experience

Project Impact

Amazon Statistics

- 6.3M Amazon sellers (2022) \star SMB Biz account for 60% of Amazon sales
- \star 300M Active accounts (2022)
 - 250M Customer Reviews (2020)

MVP Demo

raymondfang25.github.io

Amazon Review Sentinel

Current Process

Data Source & EDA

Amazon Reviews (May 1996 - Oct 2018)

Product	Product Category	Review Data	F
Refrigerator	Appliances	reviews (602,777 reviews)	metadata
Ladder	Home and Kitchen	<u>reviews</u> (21,928,568 reviews)	metadata
Standing Desk	Office Products	reviews (5,581,313 reviews)	metadata
Lawn Mower	Patio Lawn and Garden	reviews (5,236,058 reviews)	metadata

Product Considerations

- ★ Sufficient number of negative reviews
- ★ Uniform product attributes for insight quality
- ★ Adequate value for product user's interest
- \star Physically sizable to discourage returns

Product Data

(30,459 products)

(1,301,225 products)

(315,644 products)

(279,697 products)

Data Pipeline

Labeling Methodology	Quality	Design / Functionality	Delivery / Packaging
Explicit Keywords & Phrases	 stopped working broke poorly made 	 poorly designed don't like run into problem 	 packaging damage box was open non-original package
Specific Aspects or Features	 flimsy plastic wheel fell off bottom snapped 	 heavy bags hangs too low doesn't cut even 	 arrived with scratch missing parts previously returned
Sentiment Evaluation	reviewer shows dissatisfaction with quality or quality control	reviewer expresses the expectation for product to be made in certain way	reviewer believes the issue caused by delivery/packaging process prior to use of the product

- irrelevant
- unclear cause
- features not covered

Model Comparison

Naïve Bayes

GPT

PRO (+)	 Simplistic Model Fast Our baseline model
CON (-)	Statistical Model

PRO (+)	 State of the Art Great for Summarization/ Translation
CON (-)	Only looks at left context for words

PRO (+)	•
CON (-)	Tra tha

BERT

State of the Art Looks at left and right context for words Great for NLU tasks

ained on smaller corpus an GPT

Supervised ML (Text Classification)

Results and Evaluation

- Data split Training: 80% Validation: 10% Test: 10%
- Our base model was Naive Bayes compared against a fine tuned BERT base model and fine tuned BERT large model (BERT large has more layers and parameters than BERT base)
- Weighted F1-score evaluation used due to label imbalanced dataset
- Evaluation was for all four labelled product categories: Lawn mowers, Fridges, Desks, Ladders
- Future work: Evaluate whether unfreezing additional layers of BERT Base and BERT large would improve performance and the addition of more labeled data for each product category

Model	Precision		
	Delivery/Packaging	Quality	Design/Functionality
Base	0.900	0.770	0.860
BERT Base	0.892	0.807	0.818
BERT Large	0.833	0.784	0.903

Model		Recall		
	Delivery/Packaging	Quality	Design/Functionality	
Base	0.890	0.890	0.710	
BERT Base	0.904	0.788	0.829	
BERT Large	0.959	0.812	0.737	

Model	F1-Score		
	Delivery/Packaging	Quality	Design/Functionality
Base	0.900	0.830	0.780
BERT Base	0.898	0.798	0.824
BERT Large	0.892	0.798	0.812

Model	Weighted F1-Score	
Base	0.830	
BERT Base	0.837	
BERT Large	0.832	

Unsupervised ML (Topic Modeling)

We used Bertopic to generate topics by product and review class to provide the sellers additional insights about what the customers are saying in their reviews

Challenges & How we resolved

- Large Dataset
 ⇒ AWS S3 Bucket & Data Preprocessing
- Unlabeled Dataset
 ⇒ Manual Labelling
- Lengthy Reviews for Insights
 ⇒ Supervised Classification & Unsupervised Topic Modeling

Future Considerations

Model Generalization - evaluating the model on a labeled dataset that model was not trained on

Conclusion

Unleash the magic of LLM and help both Amazon sellers and buyers navigate through the landscape of negative Amazon feedbacks and mastering the product insights with ease!

