Amazon
Review Sentinel

Raymond Fang
Morgan Yung
Joy Jiang
Project Overview

- Customer Feedback is pivotal in influencing purchasing decisions.
- High volume & unstructured data leads to inefficient processing of data.
- Seeking to leverage Data Science to automate and enhance the process.
Target User

★ Sellers: Streamline process of extracting insights from customer reviews
★ Buyers: Provide resources to enhance overall purchasing experience
Project Impact

Amazon Statistics

★ 6.3M Amazon sellers (2022)
SMB Biz account for 60% of Amazon sales
★ 300M Active accounts (2022)
250M Customer Reviews (2020)
MVP Demo

raymondfang25.github.io

Amazon Review Sentinel

Current Process
Data Source & EDA

Amazon Reviews (May 1996 - Oct 2018)

<table>
<thead>
<tr>
<th>Product</th>
<th>Product Category</th>
<th>Review Data</th>
<th>Product Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerator</td>
<td>Appliances</td>
<td>reviews (602,777 reviews)</td>
<td>metadata (30,459 products)</td>
</tr>
<tr>
<td>Ladder</td>
<td>Home and Kitchen</td>
<td>reviews (21,928,568 reviews)</td>
<td>metadata (1,301,225 products)</td>
</tr>
<tr>
<td>Standing Desk</td>
<td>Office Products</td>
<td>reviews (5,581,313 reviews)</td>
<td>metadata (315,644 products)</td>
</tr>
<tr>
<td>Lawn Mower</td>
<td>Patio Lawn and Garden</td>
<td>reviews (5,236,058 reviews)</td>
<td>metadata (279,697 products)</td>
</tr>
</tbody>
</table>

Product Considerations

★ Sufficient number of negative reviews
★ Uniform product attributes for insight quality
★ Adequate value for product user’s interest
★ Physically sizable to discourage returns
<table>
<thead>
<tr>
<th>Labeling Methodology</th>
<th>Quality</th>
<th>Design / Functionality</th>
<th>Delivery / Packaging</th>
<th>Other</th>
</tr>
</thead>
</table>
| Explicit Keywords & Phrases | • stopped working
• broke
• poorly made | • poorly designed
• don’t like
• run into problem | • packaging damage
• box was open
• non-original package | |
| Specific Aspects or Features | • flimsy plastic
• wheel fell off
• bottom snapped | • heavy
• bags hangs too low
• doesn’t cut even | • arrived with scratch
• missing parts
• previously returned | • irrelevant
• unclear cause
• features not covered |
| Sentiment Evaluation | reviewer shows dissatisfaction with quality or quality control | reviewer expresses the expectation for product to be made in certain way | reviewer believes the issue caused by delivery/packaging process prior to use of the product | |
Model Comparison

Naïve Bayes
- **PRO (+)**
 - Simplistic Model
 - Fast
 - Our baseline model
- **CON (-)**
 - Statistical Model

GPT
- **PRO (+)**
 - State of the Art
 - Great for Summarization/Translation
- **CON (-)**
 - Only looks at left context for words

BERT
- **PRO (+)**
 - State of the Art
 - Looks at left and right context for words
 - Great for NLU tasks
- **CON (-)**
 - Trained on smaller corpus than GPT
Supervised ML (Text Classification)

1. Pre-Processed Data
2. Train
 - BertTokenizer Bert-Base-Uncased
 - input_ids attention mask labels
3. Dataloader random sampler batching
4. BERT BASE UNCASED MODEL
5. TESTING
 - True Labels
 - Predicted Labels
 - TESTNG F1 Score
6. Test
 - BertTokenizer Bert-Base-Uncased
 - input_ids attention mask labels
7. Dataloader random sampler batching
8. BERT FINE TUNED MODEL
Results and Evaluation

- Data split - Training: 80% Validation: 10% Test: 10%

- Our base model was Naive Bayes compared against a fine tuned BERT base model and fine tuned BERT large model (BERT large has more layers and parameters than BERT base)

- Weighted F1-score evaluation used due to label imbalanced dataset

- Evaluation was for all four labelled product categories: Lawn mowers, Fridges, Desks, Ladders

- Future work: Evaluate whether unfreezing additional layers of BERT Base and BERT large would improve performance and the addition of more labeled data for each product category
Unsupervised ML (Topic Modeling)

We used Bertopic to generate topics by product and review class to provide the sellers additional insights about what the customers are saying in their reviews.
Challenges & How we resolved

- **Large Dataset**
 ⇒ AWS S3 Bucket & Data Preprocessing

- **Unlabeled Dataset**
 ⇒ Manual Labelling

- **Lengthy Reviews for Insights**
 ⇒ Supervised Classification & Unsupervised Topic Modeling

Future Considerations

Model Generalization - evaluating the model on a labeled dataset that model was not trained on
Conclusion

Unleash the magic of LLM and help both Amazon sellers and buyers navigate through the landscape of negative Amazon feedbacks and mastering the product insights with ease!