AI4AQ

Artificial Intelligence for Air Quality A Case Study in the Salt Lake Valley

MIDS Spring 2024

Silas Gifford, Jared Feldman, Steven Tseng, Claira Kauffmann

Introduction

Silas Gifford

Jared Feldman

Claira Kauffmann

Steven Tseng

Understanding the Problem

Demo

Dashboard Insights

Dashboard Insights

User Feedback

"The air quality is sometimes so bad that I can't see the mountains that are less than a mile from my house. This dashboard highlights areas where there is better air quality, areas where it might be possible to go for a run on an otherwise bad air day." - Amanda Apgar, Local Salt Lake City resident

Technical Approach

Datasets

Dalasels						
Source	Data Elements	Date Range	Granularity			
PurpleAir	PM 2.5, PM 10	2016 - Present	Single sensor locations; daily			
Department of Housing and Urban Development, Low to Moderate Income Population	Mapping, Income Level	2023	Census Block Groups			
Medicare Claims	Count of diagnoses	5% sample 2016-2018 and 2020-2022, full data for 2019	Hospitals; weekly			
Open-Meteo	Wind speed and direction	2016 - Present	Daily			
OpenStreetMaps	Mapping	Current	All of the region of interest			

Modeling

Architectures:

- 1. Baseline A: County Average
- 2. Baseline B: Nearest Neighbor Sensor
- 3. XGBoost
- 4. Feedforward Neural Network
- 5. Feedforward + CNN features

Features:

month, average PM 2.5, county, wind speed, wind gusts, latitude, wind direction, longitude, income category, nearest PM 2.5, nearest PM 10

census tract map images

Image Feature:

Feature Importance

Unsupervised CNN and k-means

912 overlapping map tiles clustered into 10 groups.

Cluster 6

Cluster 2

Cluster 6

Cluster 2

Cluster 6

Cluster 6

Cluster 6

Cluster 2

Cluster 2

CNN Features + Feedforward

Layer (type)	Output Shape	Param #
<pre>input_layer_3 (InputLayer)</pre>	(None, 38)	0
dense_4 (<mark>Dense</mark>)	(None, 128)	4,992
dropout_1 (Dropout)	(None, 128)	0
dense_5 (<mark>Dense</mark>)	(None, 64)	8,256
dropout_2 (<mark>Dropout</mark>)	(None, 64)	0
dense_6 (<mark>Dense</mark>)	(None, 32)	2,080
dense_7 (<mark>Dense</mark>)	(None, 1)	33

Evaluation

	Mean Absolute Error	Root Mean Squared Error	R-Squared
Baseline - County Average	53.3397	80.5263	-0.07415
Baseline - Nearest Sensor	40.5587	230.4030	-0.02297
XGBoost	6.6377	12.0719	0.5166
Feedforward	4.6647	10.6322	0.6018
Feedforward + CNN features	2.1563	8.7303	0.7311

Technical Challenges

Data Limitations

 a. insufficient data
 b. inaccurate data

 Deployment

 a. application
 b. models

Next Steps

- Expand our dashboard beyond the Salt Lake Valley
- Establish a reliable network of PM 10 measurements
- Further modeling
 - could include physical models in addition to machine learning techniques as introduced with CMAQ-CNN
 - include additional historic data, such as historic **OpenStreetMap tiles**

Project Mission

AI4AQ helps address the air quality crisis in Salt Lake City. With machine learning and the combination of disparate data sources, our dashboard allows residents to gather information on their neighborhood's air quality and its effects, even if there is a gap in sensor coverage.

Appendix

Acknowledgements

- Abdul Alfozan, Privacy and Ethical Review
- Rachel Edie and Chris Pennell, Utah Department of Air Quality
- Amanda Apgar, Local Residents who reviewed the dashboard
- Korin Reid, Medicare Data Access & General Advisement
- Joyce Shen, General Advisement

ty d

CI/CD Pipeline

Image pushed to Docker Hub D 9-0 Pull Request in YAML file in Docker image GitHub **GitHub** Actions built merged to triggered Main branch

New container pushed to Amazon Lightsail

Our Solution

AI4AQ helps address the air quality crisis in Salt Lake City. With machine learning and the combination of disparate data sources, our dashboard allows residents to gather information on their neighborhood's air quality even if there is a gap in sensor coverage.