Facial Keypoints Detection: An Effort to Top the Kaggle Leaderboard

MIDS W207 | Summer 2015 | Final Project Chris Dailey | Younghak Jang | Marguerite Oneto | Lei Yang

The Challenge

Predict the x-y coordinates of 15 keypoints on the face:

Initial Kaggle Submission

Baseline: Mean Patch Searching

Step 1 - Feature Engineering: Use PCA to create 125 eigenfaces

<u>Step 2 - Train</u>: Create "Golden Patches" -- the standard of comparison <u>Step 3 - Predict</u>: Compare patches from test images to Golden Patches. Closest wins!

Next Step: Feature Engineering

FE1: Histogram Stretching

• Provides Better Contrast

FE2: Gaussian Blurring

• Reduce local (high frequency) noise: e.g. glass effect

FE3: Flipping the Image

- Familiar to eyes, new to computer
- Increase training sample with no cost \rightarrow reduce the chance of overfitting

FE4: Keypoint Grouping

- Group images with as many common keypoints as possible \rightarrow implicitly encode the geometric constraints between points.
- Train model separately for 2 training groups, and predict on test data
 - Model 1: 4 points x 14000 images
 - Model 2: 15 points x 4280 images
- Synthesize predictions from 2 models to obtain final prediction
 - Weighted average for common point prediction

FE5: Use Predictions as Train Data

- Split train set into full-point(4280) and partial-point(9818) Subset
- Train an instance with full-point set and use it to predict on the partial-point set
- Fill the missing points in partial-point set with predictions and merge it with full-point set to get complete set(14098)

Next Step: The Model

Model: Convolution Neural Network

- 3 convolution and subsampling layers: $(96x96) \rightarrow (11x11)$
- 2 fully connected neural layers: 600 neurons
- Direct output of coordinate prediction (no activation function)

The Lasagne Model

```
def getCNN(n output):
    net = NeuralNet(
        layers=[
            ('input', layers.InputLayer),
            ('conv1', layers.Conv2DLayer),
            ('pool1', layers.MaxPool2DLayer),
            ('conv2', layers.Conv2DLayer),
            ('pool2', layers.MaxPool2DLayer),
            ('conv3', layers.Conv2DLayer),
            ('pool3', layers.MaxPool2DLayer),
            ('hidden4', layers.DenseLayer),
            ('hidden5', layers.DenseLayer),
            ('output', layers.DenseLayer),
            1,
        input shape=(None, 1, 96, 96),
        # 3 convoluational laver
        conv1 num filters=32, conv1 filter size=(3, 3), pool1 pool size=(2, 2),
        conv2 num filters=64, conv2 filter size=(2, 2), pool2 pool size=(2, 2),
        conv3 num filters=128, conv3 filter size=(2, 2), pool3 pool size=(2, 2),
        # 2 fully connected hidden layer
        hidden4 num units=500, hidden5 num units=500,
        # fully connected output layer, no activation function to give continuous output
        output num units=n output, output nonlinearity=None,
```

```
update_learning_rate=0.02,
update momentum=0.80,
```

```
regression=True,
max_epochs=35,
verbose=1,
```


The Theano Model

```
self.cost = T.sum(T.sqr(Y - y hat train)) #T.sqrt(T.mean(T.sqr(Y - y hat train)))
   update = self. backprop(self.cost, self.params)
   self.train = theano.function(inputs=[X, Y], outputs=self.cost, updates=update, allow input downcast=True)
   self.predict = theano.function(inputs=[X], outputs=y hat predict, allow input downcast=True)
def _model(self, X, w_1, w_4, w_5, p_1, p_2):
   11 = self. dropout(T.flatten(max pool 2d(T.maximum(conv2d(X, w 1, border mode='full'),0.), (2, 2)), outdim=2), p 1)
   14 = self. dropout(T.maximum(T.dot(11, w 4), 0.), p 2)
   return T.dot(14, w 5)
def dropout(self, X, p=0.):
                                                                                     Theano Model: Training vs Validation Cost Per Epoch
   if p > 0:
                                                                                                                                    - RMSE
       X *= self.srng.binomial(X.shape, p=1 - p)
                                                                                                                                      Validation
       X /= 1 - p
                                                                                                                                    RMSE Training
    return X
                                                                                  45
def backprop(self, Cost, w, alpha=0.0001, rho=0.66, epsilon=1e-6):
    grads = T.grad(cost=Cost, wrt=w)
   updates = []
                                                                                   3
   for w1, grad in zip(w, grads):
        # adding gradient scaling
        acc = theano.shared(w1.get value() * 0.0)
                                                                                  1.5
        acc new = rho * acc + (1 - rho) * grad ** 2
        gradient scaling = T.sqrt(acc new + epsilon)
        grad = grad / gradient scaling
                                                                                   Ω
        updates.append((acc, acc new))
                                                                                          10
                                                                                                  22.5
                                                                                                           35
                                                                                                                  47.5
                                                                                                                           60
        updates.append((w1, w1 - grad * alpha))
                                                                                                          Epoch
   return updates
```

Results

The Benefits of Feature Engineering

Feature Engineering Benchmark (3-Layer Lasagne Model): Training Time / Accuracy

No.	Method Applied	Train Set Size	# of epochs	mini-batch size	Train Time	RMSE	Improvement
0.	No feature engineering	2140	100	100	96min	3.85	baseline
1.	Histogram Stretching	2140	100	100	125min	3.66	5.0%
2.	#1 + Gaussian Blur	2140	100	100	110min	3.73	3.1%
3.	#1 + Gaussian Blur	2140	100	50	121min	3.52	8.6%
4.	#1 + Gaussian Blur	2140	200	100	244min	3.58	7.0%
5.	#2 + Horizontal Flip	4280	200	100	364min	3.36	12.7%
6.	Predict partial training set and combine with full-point set	14098	200	100	1235min	3.55	7.8%

The Kaggle Leaderboard

	RMSE	Place
Initial Submission	5.79	42nd
Lasagne Model	3.91	34th
Theano Model	2.92	13th

Parsimony Wins!

Future Work

Next Steps: Another FE Trick

Tricks that significantly improve generalization

- Train on random 224x224 patches from the 256x256 images to get more data. Also use left-right reflections of the images.
 - At test time, combine the opinions from ten different patches: The four 224x224 corner patches plus the central 224x224 patch plus the reflections of those five patches.

Next Steps: More Computing Power

- Diagnose speed issues
- Better utilize GPUs: EC2, CUDA
- Would allow for more experimentation
 - Alternative cost function for smoother convergence
 - Alternative hyperparameters

T AWS	• Services •						
Launch Instance Connect	Actions 🕶						
Q Filter by tags and attributes or search by keyword							
Name -	Instance ID 👻 Instance Type 👻						
Theano and Lasagne 2	i-491c268b g2.2xlarge						
Theano and Lasagne 1	i-93241e51 g2.2xlarge						
Theano and Lasagne 0	i-56380294 t2.micro						
Theano and Lasagne 3	i-54e4e796 g2.2xlarge						
Theano and Lasagne 4	i-78ffabb3 g2.8xlarge						