
Facial Keypoints Detection
(https://www.kaggle.com/c/facial-keypoints-
detection)

MIDS W207 Final Project (https://github.com/leiyang-
ucb/W207Final)

Summer 2015

Team: Christopher Dailey, Younghak Jang, Marguerite Oneto, Lei Yang

Executive Summary:
1. Baseline Model -- Mean Patch Searching Algorithm: For our initial submission to Kaggle, we

implemented a Mean Patch Searching algorithm. This model is a point-wise, search-based
predicting algorithm that compares the neighborhood (patch) of a group of candidate pixels within
each test image with the "golden patch" generated from the training data. Using all training images,
without any feature engineering, our RMSE score on Kaggle was 5.79, placing us 42nd on the
Kaggle leaderboard (https://www.kaggle.com/c/facial-keypoints-detection/leaderboard).

2. Feature Engineering: We applied 3 different strategies.
A. Histogram Stretching: Histogram stretching rescales each pixel intensity value from an

image's original range of [a, b] to [0, 1], where a > 0 and b < 1. Thus, the gray-scale range
within the image is "stretched," improving the image's contrast.

B. Gaussian Blurring: Gaussian blurring filters out high-frequency features, thus reducing
local noise and making the global pattern more expressive.

C. Image Flipping: We flipped each image horizontally and renamed the left/right keypoints,
allowing us to double the size of the training dataset.

D. Using Predictions as Training Set: There were pictures which didn't have all 15 key-
points. We used pictures with all the points to train a neural net first, used it to predict on
the pictures with missing key-points, then used the predictions to fill in the missing points.
Finally we used the whole training set with all(predicted) key-points to re-train yet another
neural net.

3. Cleaning the Data -- Keypoint Grouping: For this Kaggle competition, the goal is to detect 15
different keypoints on the face, e.g. center of left eye, center of right eye, nose tip. One issue with
the training data was that not all images have all 15 keypoints identified. Out of 7049 training
images, 7000 images (99%) had at least 4 keypoints identified (center of left eye, center of right
eye, nose tip, and center of bottom lip). Only 2140 images (30%) had all 15 keypoints identified. We
therefore grouped the data according to which keypoints were available and trained two different
models -- one on the 7000 images in the 4-keypoints group and one on the 2140 images in the 15-

https://www.kaggle.com/c/facial-keypoints-detection
https://github.com/leiyang-ucb/W207Final
https://www.kaggle.com/c/facial-keypoints-detection/leaderboard

Import Python Packages

keypoints group. Because we also flipped each image, we ended up with training datasets of size
14000 and 4280, respectively. By grouping the training images in this way and building a model for
each group, the geometric constraints among keypoints are implicitly encoded, and the local
optimum caused by ambiguity is avoided [Sun et al. 2013] (http://www.cv-
foundation.org/openaccess/content_cvpr_2013/papers/Sun_Deep_Convolutional_Network_2013_CVPR_paper.pdf)

4. Methodology: In this work we applied Convolutional Neural Networks (CNN) with two distinct
structures: one with 3 convolutional layers and 2 neural layers, and the other with 1 convolutional
layer and 2 neural layers.

5. Results:
A. Lasagne Model: The new Lasagne Python library offers functionality to create

sophisticated CNNs. It is built on top of Python's Theano library. We used Lasagne's
NeuralNet class to build a 5-layer CNN that had 3 convolutional layers and 2 hidden, fully-
connected neural layers. This model improved our Kaggle score to 3.91, which ranked us
34th on the Kaggle leaderboard. We also built a 3-layer CNN with 1 convolutional layer
and 2 hidden layers to experiment on different parameters such as our feature engineering,
number of epochs, and mini-batch size, etc.

B. Theano Model: Because the Lasagne Model was very slow to train, we went back to raw
Theano and built a simpler 3-layer CNN, with only 1 convolutional layer and 2 hidden, fully-
connected neural layers. This model trained much faster and gave us our best Kaggle
score, 2.92, which ranked us 13th on the Kaggle leaderboard.

C. Computing Power Constraints: As mentioned above, the Lasagne Model was
prohibitively slow to train, taking roughly 30 minutes per epoch. The Theano Model trained
faster, 6 minutes per epoch, but it still wasn't fast enough to allow us to experiment with
different parameter settings. Mostly we improved our Theano Model score by allowing the
model to run more epochs. To combat this slow training, we attempted to use GPUs
instead of CPUs for our computing power. We built a g2.8xlarge EC2 instance to take
advantage of AWS's GPU speed and larger memory. We also enabled the use of the
GPU's on our laptops by implementing CUDA
(http://www.nvidia.com/object/cuda_home_new.html). Yet these attempts were
unsuccessful at improving our training speeds. Time constraints prevented us from
exploring why GPUs were not able to give us a speed boost.

6. Error Analysis: Since "hand-crafted feature extraction can be advantageously replaced by
automatic feature learning that operates directly on pixel images" [LeCun 1998]
(http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf), our focus was mainly on improving results by
experimenting with different network structures and meta-parameters, with various keypoint
groupings.

7. Future Work:
A. Extensive structural comparisons, with faster GPU training.
B. Alternative cost function to improve training with better convergence and prediction.
C. More image preprocessing to reduce noise and provide better input.

http://www.cv-foundation.org/openaccess/content_cvpr_2013/papers/Sun_Deep_Convolutional_Network_2013_CVPR_paper.pdf
http://www.nvidia.com/object/cuda_home_new.html
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

In [1]:

%matplotlib inline

from lasagne import layers
from lasagne.updates import nesterov_momentum
from nolearn.lasagne import NeuralNet

import os
import time
import csv
import shelve
import pickle
from datetime import datetime

import numpy as np
from pandas.io.parsers import read_csv
from sklearn.utils import shuffle

import matplotlib.pyplot as plt
from matplotlib import cm

import theano
from theano import tensor as T
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
from theano.tensor.nnet.conv import conv2d
from theano.tensor.signal.downsample import max_pool_2d
print theano.config.device # We're using CPUs (for now)
print theano.config.floatX # Should be 64 bit for CPUs

np.random.seed(0)

Data Import, Scaling, and Randomization

cpu
float64

In [2]:

FTRAIN = './Data/FKD_Train.csv'
FTEST = './Data/FKD_Test.csv'

def load(test=False, cols=None):

 fname = FTEST if test else FTRAIN
 df = read_csv(os.path.expanduser(fname)) # load pandas dataframe

 # The Image column has pixel values separated by space; convert
 # the values to numpy arrays:
 df['Image'] = df['Image'].apply(lambda im: np.fromstring(im, sep=' '))

 if cols: # get a subset of columns
 df = df[list(cols) + ['Image']]

 X = np.vstack(df['Image'].values) / 255. # scale pixel values to [0, 1]
 X = X.astype(np.float32)

 if not test: # only FTRAIN has any target columns
 y = df[df.columns[:-1]].values
 # scale target coordinates to [-1, 1] - need because we don't have bias
on the net
 y = (y - 48) / 48 # 96/2=48
 y = y.astype(np.float32)
 shuffle = np.random.permutation(np.arange(X.shape[0]))
 X, y = X[shuffle], y[shuffle]
 else:
 y = None

 return X, y, np.array(df.columns[:-1])

X, y, y_name = load()
X_t, trash, junk = load(test=True)
print("X.shape == {}; X.min == {:.3f}; X.max == {:.3f}".format(X.shape, X.min(),
X.max()))
print("y.shape == {}; y.min == {:.3f}; y.max == {:.3f}".format(y.shape, y.min(),
y.max()))
print("X_t.shape == {}; X_t.min == {:.3f}; X_t.max == {:.3f}".format(X_t.shape,
X_t.min(), X_t.max()))
ex_x, ex_y = X[666], y[666]

X.shape == (7049, 9216); X.min == 0.000; X.max == 1.000
y.shape == (7049, 30); y.min == nan; y.max == nan
X_t.shape == (1783, 9216); X_t.min == 0.000; X_t.max == 1.000

Feature Engineering 1: Histogram Stretching
 and are 5 and 95 percentile of the image
 and are 0 and 1 respectively for the maximum range

Histogram stretching transfers any point of the image to such that:

The transferred image is expected to have better contrast.

Baseline: Mean Patch Searching
Ref:
http://cs229.stanford.edu/proj2014/Yue%20Wang,Yang%20Song,Facial%20Keypoints%20Detection.pdf
(http://cs229.stanford.edu/proj2014/Yue%20Wang,Yang%20Song,Facial%20Keypoints%20Detection.pdf)
Algorithm:

1. Training: For each keypoint, find a center and its square neighborhood (mean patch) based
on training data.

2. Predicting: For each key point, find a neighborhood of candidates around the center. Then
for each candidate, compare its patch with the mean patch from Step 1. The candidate
with the most similar patch is the prediction.

Score: RMSE = 5.79 (deviation in pixels)
Implementation: See Appendix I

a b
l u

p p′ =
p − a

b − a

− lp′

u − l

http://cs229.stanford.edu/proj2014/Yue%20Wang,Yang%20Song,Facial%20Keypoints%20Detection.pdf

In [3]:

define a helper plotting function
def plot2(image1, p1, image2, p2):
 plt.figure(figsize=(16,8))
 plt.subplot(1,2,1)
 plt.imshow(np.reshape(image1,(96,96)), cmap = cm.gray)
 for x, y in np.reshape(p1,(len(p1)/2, 2)):
 plt.plot(x, y, 'r.')
 plt.axis('off')
 plt.subplot(1,2,2)
 plt.imshow(np.reshape(image2,(96,96)), cmap = cm.gray)
 for x, y in np.reshape(p2,(len(p2)/2, 2)):
 plt.plot(x, y, 'r.')
 plt.axis('off')

histogram stretching
def HistogramStretching(image):
a, b = min(image), max(image)
 a, b = np.percentile(image, 5), np.percentile(image, 95)
 l, u = 0, 1
 const = 1.0*(b*l - a*u)/(b - a)
 k = 1.0*(u-l)/(b-a)
 return [k*p+const for p in image]

plot an example
plot2(ex_x, ex_y*48+48, HistogramStretching(ex_x), ex_y*48+48)

start_time = time.time()
X = [HistogramStretching(x) for x in X]
X_t = [HistogramStretching(x) for x in X_t]
print 'Histogram stretching completed in %.2f seconds' %(time.time()-start_time)

Histogram stretching completed in 23.95 seconds

Feature Engineering 2: Gaussian Blurring
The value of a particular pixel is transformed as the weighted combination of the original value and
the values around it.
The weight of a pixel's influence is determined by a Gaussian function over the distance to the
relevant pixel.
Gaussian Weight Ref: http://www.pixelstech.net/article/1353768112-Gaussian-Blur-Algorithm
(http://www.pixelstech.net/article/1353768112-Gaussian-Blur-Algorithm)

In [4]:

define the Gaussian weights of neighbors as constant variable
sigma2 = 1.75**2
neighborIndex = [[i,j] for i in range(-1,2) for j in range(-1,2)]
gaussianWeight = np.array([np.exp(-(i**2+j**2)/(2*sigma2))/(2*np.pi*sigma2) for
i,j in neighborIndex])
gaussianWeight = gaussianWeight / sum(gaussianWeight)

function to return the index of neighborhood pixels for pixel at n
def getNeighborAndWeight(n, ncolumn, nrow):
 # get row and column id first for index i
 (r, c) = divmod(n, ncolumn)
 # get indices for the neighbors (including self)
 neighbors = [[r+i,c+j] for i,j in neighborIndex]
 # get neighbor index and the associated Gauusian weigth
 neighborWeights = []
 for nb, gw in zip(neighbors, gaussianWeight): # range(len(neighbors)):
 r,c = nb
 if r>=0 and r<nrow and c>=0 and c<ncolumn:
 neighborWeights.append([r*ncolumn + c, gw])
 return neighborWeights

apply Gaussian blur to one image
def gaussianBlurOneSample(x):
 y = np.empty(len(x))
 for i in range(len(x)):
 neighbors = getNeighborAndWeight(i,96,96)
 y[i] = sum([x[j[0]]*j[1] for j in neighbors])
 return y

plot an example
plot2(ex_x, ex_y*48+48, gaussianBlurOneSample(ex_x), ex_y*48+48)

blur both training and predicting data
start_time = time.time()
X = [gaussianBlurOneSample(x) for x in X]
X_t = [gaussianBlurOneSample(x) for x in X_t]
print 'Gaussian blur completed in %.f seconds!' %(time.time()-start_time)

http://www.pixelstech.net/article/1353768112-Gaussian-Blur-Algorithm

Feature Engineering 3: Image Flipping to Increase Training Sample
Flip the face horizontally
Rename x direction features by switching left and right
To the human eye, the images look similar. Yet they look brand new to the model. Benefit: Increases
training dataset with no cost

Gaussian blur completed in 930 seconds!

In [5]:

flip the image
X_flip = np.reshape(np.reshape(X, (-1,1,96,96))[:, :, :, ::-1], (-1, 96*96))

flip the x coordinate value
multiplier = [-1,1]*(y.shape[1]/2)
y_flip = np.multiply([multiplier,]*y.shape[0], y)

flip the x coordinates/column name
y_name_flip = []
for name in y_name:
 if 'left' in name.lower():
 y_name_flip.append(name.replace('left','right'))
 elif 'right' in name.lower():
 y_name_flip.append(name.replace('right','left'))
 else:
 y_name_flip.append(name)
y_name_flip=np.array(y_name_flip)
isort = [np.where(y_name_flip==x)[0][0] for x in y_name]

combine data and align with original column
y = np.concatenate((y, y_flip[:, isort]), axis=0)
X = np.concatenate((X, X_flip), axis=0)
print 'After merge X:%s, y:%s' %(X.shape, y.shape)

plot2(ex_x, ex_y*48+48, X_flip[666], y_flip[666, isort]*48+48)

In []:

After merge X:(14098, 9216), y:(14098, 30)

Cleaning the Data: Group Images By Available Keypoints To Obtain Training
Datasets

Group images with same training keypoints

In [6]:

FKP_Count = {}
for x,f in zip(X,y):
 picker = ~np.isnan(f)
 id = str.join(',', y_name[picker])
 if id not in FKP_Count:
 FKP_Count[id] = 0
 FKP_Count[id] += 1

top_feature = np.array(FKP_Count.keys())[np.argsort(FKP_Count.values())[::-1]]

def getTopGroup(fea):
 isort = [np.where(y_name==x)[0][0] for x in fea]
 picker = np.alltrue(~np.isnan(y[:, isort]), axis=1)
 return fea, np.reshape(X[picker], (-1, 1, 96, 96)), np.array(y[picker])[:, i
sort]

feature1, X1, y1 = getTopGroup(top_feature[0].split(','))
feature2, X2, y2 = getTopGroup(top_feature[1].split(','))
x_t = np.reshape(X_t, (-1, 1, 96, 96))

print '1st training set: X1:%s - y1:%s, y1.min:%.3f, y1.max:%.3f' %(str(X1.shape
), str(y1.shape), y1.min(), y1.max())
print '2nd training set: X2:%s - y2:%s, y2.min:%.3f, y2.max:%.3f' %(str(X2.shape
), str(y2.shape), y2.min(), y2.max())
print 'testing set: x_t:%s' %str(x_t.shape)

Model 1: Convolutional Neural Network
(https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/base.py)
Using Lasagne

3 Convolutional layers (https://github.com/Lasagne/Lasagne/blob/master/lasagne/layers/conv.py)
with reception filter: (3x3), (2x2), (2x2) respectively
Number of layers: 32, 64, 128
3 subsampling layers (https://github.com/Lasagne/Lasagne/blob/master/lasagne/layers/pool.py)
with filter size (2x2) for each
Use rectifier activation function for each convolutional layer

1st training set: X1:(14000, 1, 96, 96) - y1:(14000, 8), y1.min:-0.9
86, y1.max:0.996
2nd training set: X2:(4280, 1, 96, 96) - y2:(4280, 30), y2.min:-0.96
4, y2.max:0.996
testing set: x_t:(1783, 1, 96, 96)

https://github.com/dnouri/nolearn/blob/master/nolearn/lasagne/base.py
https://github.com/Lasagne/Lasagne/blob/master/lasagne/layers/conv.py
https://github.com/Lasagne/Lasagne/blob/master/lasagne/layers/pool.py

In [13]:

def getCNN(n_output):
 net = NeuralNet(
 layers=[
 ('input', layers.InputLayer),
 ('conv1', layers.Conv2DLayer),
 ('pool1', layers.MaxPool2DLayer),
 ('conv2', layers.Conv2DLayer),
 ('pool2', layers.MaxPool2DLayer),
 ('conv3', layers.Conv2DLayer),
 ('pool3', layers.MaxPool2DLayer),
 ('hidden4', layers.DenseLayer),
 ('hidden5', layers.DenseLayer),
 ('output', layers.DenseLayer),
],
 input_shape=(None, 1, 96, 96),
 # 3 convoluational layer
 conv1_num_filters=32, conv1_filter_size=(3, 3), pool1_pool_size=(2, 2),
 conv2_num_filters=64, conv2_filter_size=(2, 2), pool2_pool_size=(2, 2),
 conv3_num_filters=128, conv3_filter_size=(2, 2), pool3_pool_size=(2, 2),
 # 2 fully connected hidden layer
 hidden4_num_units=500, hidden5_num_units=500,
 # fully connected output layer, no activation function to give continuou
s output
 output_num_units=n_output, output_nonlinearity=None,

 update_learning_rate=0.02,
 update_momentum=0.80,

 regression=True,
 max_epochs=35,
 verbose=1,
)
 return net

print 'LeNet defined!'

Model 2: 3-Layer Convolutional Neural Network Using Theano
(http://www.deeplearning.net/software/theano/)

1 convolution layer (32 feature maps) with subsampling and 2 globally connected neural layers (600
neurons)
Because the convergence process was not smooth, we reduced the learning rate to 0.0001 and
saved the predictions for the test data whenever the cost was reduced during an epoch.

In []:

class FacialDetector():
 # Initialize an instance of the class.

LeNet defined!

http://www.deeplearning.net/software/theano/

 # Initialize an instance of the class.
 def __init__(self, n_output):

 self._getParameters(n_output)
 self._getModel()

 def _getParameters(self, numClasses):
 numHiddenNodes = 600
 patchWidth = 3
 patchHeight = 3
 featureMapsLayer1 = 32
 # Convolution layers.
 w_1 = theano.shared(np.asarray((np.random.randn(*(featureMapsLayer1, 1,
patchWidth, patchHeight))*.01)))
 # Fully connected NN.
 w_4 = theano.shared(np.asarray((np.random.randn(*(featureMapsLayer1 * 49
* 49, numHiddenNodes))*.01)))
 w_5 = theano.shared(np.asarray((np.random.randn(*(numHiddenNodes, numCla
sses))*.01)))
 self.params = [w_1, w_4, w_5]
 self.srng = RandomStreams()

 def _getModel(self):
 theano.config.floatX = 'float64'
 X = T.tensor4() # conv2d works with tensor4 type
 Y = T.matrix()

 w_1, w_4, w_5 = self.params[0], self.params[1], self.params[2]
 y_hat_train = self._model(X, w_1, w_4, w_5, 0.2, 0.5)
 y_hat_predict = self._model(X, w_1, w_4, w_5, 0., 0.)

 self.cost = T.sum(T.sqr(Y - y_hat_train)) #T.sqrt(T.mean(T.sqr(Y - y_hat
_train)))
 update = self._backprop(self.cost, self.params)
 self.train = theano.function(inputs=[X, Y], outputs=self.cost, updates=u
pdate, allow_input_downcast=True)
 self.predict = theano.function(inputs=[X], outputs=y_hat_predict, allow_
input_downcast=True)

 def _model(self, X, w_1, w_4, w_5, p_1, p_2):
 l1 = self._dropout(T.flatten(max_pool_2d(T.maximum(conv2d(X, w_1, border
_mode='full'),0.), (2, 2)), outdim=2), p_1)
 l4 = self._dropout(T.maximum(T.dot(l1, w_4), 0.), p_2)
 return T.dot(l4, w_5)

 def _dropout(self, X, p=0.):
 if p > 0:
 X *= self.srng.binomial(X.shape, p=1 - p)
 X /= 1 - p
 return X

 def _backprop(self, Cost, w, alpha=0.0001, rho=0.66, epsilon=1e-6):
 grads = T.grad(cost=Cost, wrt=w)
 updates = []
 for w1, grad in zip(w, grads):
 # adding gradient scaling

 # adding gradient scaling

 acc = theano.shared(w1.get_value() * 0.0)
 acc_new = rho * acc + (1 - rho) * grad ** 2
 gradient_scaling = T.sqrt(acc_new + epsilon)
 grad = grad / gradient_scaling
 updates.append((acc, acc_new))
 updates.append((w1, w1 - grad * alpha))
 return updates

 def _shuffleData(self, p, X, y):
 # shuffle it
 shuffle = np.random.permutation(np.arange(X.shape[0]))
 X, y = X[shuffle], y[shuffle]
 # divide
 n_train = np.round(X.shape[0]*p)
 return X[:n_train], y[:n_train], X[n_train:], y[n_train:]

 def fit_predict(self, X, y, x_t, epochs=1000, miniBatchSize=100):
 filename = 'save_' + datetime.now().strftime("%Y%m%d%H%M%S") + '.txt'
 print '\nepoch#: %d, batch#: %d, training#: %s, file: %s\n' %(epochs, mi
niBatchSize, y.shape, filename)
 start_time = time.time()
 min_test_rmse = 3.5
 # divide data
 train_data, train_labels, test_data, test_labels = self._shuffleData(0.9
, X, y)
 for i in range(epochs):
 epoch_start = time.time()
 # shuffle training data only
 shuffle = np.random.permutation(np.arange(train_data.shape[0]))
 train_data, train_labels = train_data[shuffle], train_labels[shuffle
]
 # run mini-batch gradient descent
 for start, end in zip(range(0, len(train_data), miniBatchSize), rang
e(miniBatchSize, len(train_data), miniBatchSize)):
 self.cost = self.train(train_data[start:end], train_labels[start
:end])
 epoch_time = time.time() - epoch_start
 # rescale labels
 orig_test_labels = test_labels * 48 + 48
 predicted_labels = self.predict(test_data) * 48 + 48
 # predictions are considered accurate if the are off by less than tw
o pixels
 accuracy = np.mean(abs(orig_test_labels - predicted_labels) < 2)
 test_rmse = np.sqrt(np.mean(np.square(predicted_labels - orig_test_l
abels)))
 new_prediction = 'no'
 # if we have a new low test_rmse, save the weights and predictions
 isSaved = ''
 if test_rmse < min_test_rmse:
 min_test_rmse = test_rmse
 new_prediction = 'yes'
 #save new weights - too big
pickle.dump(self.params, open('kaggle_weights.pkl', 'w'))

pickle.dump(self.params, open('kaggle_weights.pkl', 'w'))

 # save new predictions
 kaggle_predictions = self.predict(x_t) * 48 + 48
 np.savetxt(filename, kaggle_predictions)
 isSaved = '(saved)'
 # print epoch results to screen
 print '%d) trainRMSE = %.4f, accuracy = %.4f, valRMSE = %.4f, trainT
ime = %.2f min, endTime = %s %s' %(i+1, self.cost, accuracy, test_rmse, epoch_ti
me/60, time.strftime("%I:%M:%S"), isSaved)
 if test_rmse < 1.0:
 print 'RMSE less than 1, good enough!'
 break
 print '\nTotal train time = %.2f hours' %((time.time() - start_time)/360
0)
 return kaggle_predictions

print 'Model refreshed @ %s' %(time.strftime("%I:%M:%S"))

Training, Predicting, and Results

Training Procedures: Best Training Strategy (Appendix III)

1. Train one model (net1) with X1 dataset - 14000 images with 4 key points - 25 minutes/epoch x 69
epochs

2. Train one model (net2) with X2 dataset - 4280 images with all 15 key points - 7.5 minutes/epoch x
38 epochs

3. Each model makes predictions for 1783 testing images, giving predictions only for their available
training keypoints (4 or 15).

4. For common keypoints across the two models, we take the weighted mean between the two
predictions to generate the final prediction.

5. Shuffle the training data for each epoch. Use RMSE as the cost function. Use a mini-batch size of
10. Use a momentum speed of 0.66. Use a learning rate of 0.0001.

6. Best Score: RMSE = 2.92 (deviation in pixels)

Training Loss Schedule

This shows the cost trend of the Theano Model (net1) while training on dataset X1 for 69 epochs:

In [1]:

from IPython.display import Image
Image(filename='CostGraph3.png')

Out[1]:

Feature Engineering Benchmark (3-Layer Lasagne Model): Training Time / Accuracy

No. Method Applied
Train Set

Size
of

epochs

mini-
batch

size

Train
Time

RMSE Improvement

0. No feature engineering 2140 100 100 96min 3.85 baseline

1. Histogram Stretching 2140 100 100 125min 3.66 5.0%

2. #1 + Gaussian Blur 2140 100 100 110min 3.73 3.1%

3. #1 + Gaussian Blur 2140 100 50 121min 3.52 8.6%

4. #1 + Gaussian Blur 2140 200 100 244min 3.58 7.0%

5. #2 + Horizontal Flip 4280 200 100 364min 3.36 12.7%

6.
Predict partial training set and
combine with full-point set

14098 200 100 1235min 3.55 7.8%

Lessons Learned:

1. Convergence is not monotonic, despite choosing a smaller learning rate. This is surprising since the
cost function, RMSE, is convex.

2. Training takes a lot more time with a more complex model structure and/or more training data. A
powerful PC using the CPU isn't going to provide the optimal solution.

3. Training time is proportional to the number of epochs and the training dataset size, but reducing
mini-batch size didn't increase the training time as much as expected. Reducing the number of
layers didn't decrease the training time much. For comparison, the 5-layer neural net took about 7
minutes for one epoch, while the 3-layer neural net took about 6 minutes.

4. Even though we were able to test only two configurations (Nos. 2 and 3 in the table above), mini-
batch size seems to have a big impact on accuracy. Halving the mini-batch size increased accuracy
better than doubling the number of epochs.

5. At first we assumed that a complex model would always outperform simpler ones. However, the 5-
layer neural net was much slower to converge, and given the same number of epochs, resulted in
worse RMSE than the 3-layer model. In the end, we learned that the 5-layer model takes many
more epochs to configure its weights, and the simpler 3-layer model is much more powerful than
we initially thought.

6. Other hyperparameters, such as the number of feature maps, feature detector size, Gaussian blur
sigma, and drop out probabilities need more exploration to find the optimal model. With our limited
computing power and time constraints, we were not able to conduct all the experiments that we
wanted.

Error Analysis
1. Rank Prediction Error on Keypoints and Images

Actual [num_test, num_coordinates] - actual keypoint coordinates from testing faces
Prediction [num_test, num_coordinates] - predicted keypoint coordinates for testing faces
Note: Two inputs must have the same dimensions, and the function is not comparing the
absent key points (0) on the face

2. Visualization

In [8]:

print a rank for predidction RMSE
def RankPredictionRMSE(actual, prediction):
 print '\nError Analysis:'
 feaRMSE, keyRMSE = [], []
 # for each feature
 for i in range(len(feature_name)):
 picker = actual[:,i]>0
 feaRMSE.append(np.sqrt(np.mean((actual[picker,i]-prediction[picker,i])**
2)))
 feaRMSE = np.array(feaRMSE)
 feaRank = np.argsort(feaRMSE)

 # for each keypoint
 keypoints = [x[:-2] for x in feature_name]
 indexes = np.unique(keypoints, return_index=True)[1]
 keypoints = np.array([keypoints[i] for i in sorted(indexes)])
 for i in range(len(keypoints)):
 act = actual[:,i*2:(i+1)*2]
 pre = prediction[:,i*2:(i+1)*2]
 picker = act[:,0]>0
 keyRMSE.append(np.sqrt(np.mean((act[picker]-pre[picker])**2)))
 keyRMSE = np.array(keyRMSE)
 keyRank = np.argsort(keyRMSE)
 showKey = np.append(keypoints[keyRank][::-1], np.zeros(shape=(len(keypoints)
,1)))
 showRMSE = np.append(keyRMSE[keyRank][::-1], np.zeros(shape=(len(keypoints),
1)))

 # for each testing image
 imgRMSE = np.array([np.sqrt(np.mean((pre[act>0]-act[act>0])**2)) for pre, ac
t in zip(prediction, actual)])
 imgRank = np.argsort(imgRMSE)

 # print the RMSE ranking results
 template = "{0:35}{1:20}{2:35}{3:10}"
 print template.format("feature name", "RMSE", "keypoint", "RMSE") # header
 for f, r1, k, r2 in zip(feature_name[feaRank][::-1], feaRMSE[feaRank][::-1],
showKey, showRMSE):
 print template.format(f, *['%.3f' %r1, '%s' %(k if k!='0.0' else ''), '%
s' %('%.3f' %r2 if r2!=0 else '')])

 # plot top 10 badly predicted testing faces
 n_top = np.min([10, actual.shape[0]])
 print '\nTop %d faces with highest RMSE:' %n_top
 plt.figure(figsize=(20, 10))
 i=1
 for iid in imgRank[::-1][:n_top]:
 plt.subplot(2,5,i)
 plt.imshow(np.reshape(dev_faces[iid], (96,96)), cmap = cm.gray)
 picker = actual[iid]>0
 pre = np.reshape(prediction[iid, picker],(sum(picker)/2,2))
 kp = np.reshape(actual[iid, picker], (sum(picker)/2,2))
 for a,p in zip(kp, pre):
 plt.plot(a[0],a[1],'r.')
 plt.plot(p[0],p[1],'c.')
 plt.axis('off')
 plt.title('[%d] RMSE: %.3f' %(iid,imgRMSE[iid]))
 i+=1

Visualization
def plot(image, points=[], pred=[]):
 # print a picture to see
 plt.figure(figsize=(8, 8))
 if len(image)==96:
 plt.imshow(image, cmap = cm.gray)
 else:
 plt.imshow(np.reshape(image,(96,96)), cmap = cm.gray)
 plt.axis('off')
 if len(points)>0:
 for i in range(len(points)/2):
 plt.plot(points[2*i], points[2*i+1],'r.')
 if len(pred)>0:
 for i in range(len(pred)/2):
 plt.plot(pred[2*i],pred[2*i+1],'c.')

Appendix I: Mean Patch Searching Classifier

In []:

class MeanPatchSearching:
 # Initialize an instance of the class.
 def __init__(self, patch_size=10, search_size=10, stretch=True):
 self.patch_size = patch_size
 self.search_size = search_size
 self.isStretch = stretch
 self.patch_index = np.array([[i,j] for i in range(-patch_size, patch_siz
e+1)
 for j in range(-patch_size, patch_siz
e+1)])
 self.search_index = np.array([[i,j] for i in range(-search_size, search_
size+1)
 for j in range(-search_size, search_

 for j in range(-search_size, search_
size+1)])

 # train the model
 def fit(self, train_faces, train_coordinates):
 start = datetime.now()
 # stretch input if needed
 if False: #self.isStretch:
 train_faces = np.array([self._histogramStretching(x) for x in train_
faces])
 # number of faces to train
 self.num_examples = train_faces.shape[0]
 print 'number of training faces: %d' %self.num_examples
 # assuming coordinates are (x,y) pairs for each key point
 self.num_keypoints = train_coordinates.shape[1]/2
 # image dimension
 self.ncolumn = np.sqrt(train_faces.shape[1])
 self.nrow = self.ncolumn

 # get patches and their centers for all keypoints
 self.patches, self.patch_centers = [], []
 for i in range(self.num_keypoints):
 # get coordinates of current keypoint
 coordinates = train_coordinates[:,i*2:(i+1)*2]
 # filter zero values (empty from file)
 picker = coordinates[:,0]>0
 # get patch if at least one face has this point
 if sum(picker)>0:
 # get patch for this key point
 self.patches.append(self._getPatch(train_faces[picker], coordina
tes[picker]))
 # get center for this keypoint
 self.patch_centers.append(np.mean(coordinates[picker], axis=0))

 # convert to numpy array
 self.patches = np.array(self.patches)
 self.patch_centers = np.array(self.patch_centers)
 self.num_keypoints = self.patches.shape[0]
 self.training_time = (datetime.now()-start).total_seconds()/60.0
 print 'training patches shape: %s' %str(self.patches.shape)
 print 'training time: %.1f minutes' %self.training_time
 # show training patches
self._plotPatches()

 # Make prediction for each test face and return coordinates.
 def predict(self, test_faces):
 start = datetime.now()
 # stretch input if needed
 if self.isStretch:
 test_faces = np.array([self._histogramStretching(x) for x in test_fa
ces])
 self.num_predict = test_faces.shape[0]
 print 'number of predicting faces: %d' %self.num_predict
 predictions = []

 predictions = []
 for i in range(self.num_predict):

 if np.mod((i+1), self.num_predict/10)==0:
 print 'Complete %d%% ...' %(100.0*(i+1)/self.num_predict)
 pred = self._predictOneFace(test_faces[i])
 predictions.append(np.reshape(pred, (1,2*self.num_keypoints))[0])
 self.pred_coor = np.array(predictions)
 self.predict_time = (datetime.now()-start).total_seconds()/60.0
 print 'Done! - Predict time: %.1f minutes' %self.predict_time
 return self.pred_coor

 # calculate total Root Mean Squared Error (RMSE)
 def RMSE(self, actual, pred=[]):
 if len(pred)==0:
 pred = self.pred_coor
 picker = actual>0
 tRMSE = np.sqrt(np.sum((actual[picker]-pred[picker])**2)/np.sum(picker))
 return 'Total RMSE: %.2f, patch size: %d, search size: %d' %(tRMSE, self
.patch_size, self.search_size)

 # save the submission file based on prediction made for test images
 def getSubmission(self, LookupTable, feature_name):
 # create a dictionary for feature name indexing
 feature_index = {x:np.where(feature_name==x)[0][0] for x in feature_name
}
 lookupRow = []
 with open(LookupTable) as csvfile:
 # read the lookup file
 lookupReader = csv.reader(csvfile, delimiter=',')
 lookupRow.append(lookupReader.next())
 for row in lookupReader:
 # get the prediction based on image ID and feature name, and att
ach to the row
 location = self.pred_coor[int(row[1])-1, feature_index[row[2]]]
 lookupRow.append(np.append(row, location))
 lookupRow = np.array(lookupRow)
 # save row ID and location ID columns only to the submission file
 saveFile = 'submission_'+datetime.now().strftime("%Y%m%d%H%M%S")+'.csv'
 with open(saveFile, 'wb') as f:
 writer = csv.writer(f)
 writer.writerows(lookupRow[:,[0,3]])
 print 'Submission file saved as: %s' %saveFile
 return lookupRow

 # get the prediction for one face
 def _predictOneFace(self, face):
 # get prediction for each keypoint available in the model
 pred_coor = []
 for gold_p, center in zip(self.patches, self.patch_centers):
 # get the candidate points based on search size
 candidates = self._getCandidates(center)
 # get a patch for each candidate point
 pred_p = [self._getPatch([face], [x]) for x in candidates]

 # compare the patches from candidate points with gold_p

 # TODO: use better distance
 dist = [np.sum(np.abs(gold_p-x)) for x in pred_p]
 pred_coor.append(candidates[np.argmin(dist)])
 return pred_coor

 # get the candidate points - return the coordinates
 def _getCandidates(self, center):
 r, c = np.round(center)
 candidates = np.array([[r+i, c+j] for i,j in self.search_index])
 # only keep those within the bound
 picker = (np.sum(candidates>=0,axis=1) + np.sum(candidates<[self.nrow,se
lf.ncolumn],axis=1))==4
 return candidates[picker]

 # get the patch for one keypoint from all faces
 def _getPatch(self, faces, keypoints):
 patches = []
 for face, keypoint in zip(faces, keypoints):
 # get keypoint pixel row and column index
 r, c = np.round(keypoint)
 # get indices for the patch (including self)
 neighbors = np.array([[r+i, c+j] for i,j in self.patch_index])
 if np.sum(neighbors>=0)+np.sum(neighbors<[self.nrow,self.ncolumn]) =
= np.prod(neighbors.shape)*2:
 patches.append(face[[r*self.ncolumn + c for r,c in neighbors]])
else:
print 'warning - nonconforming patch'
print np.array(patches).shape
 return np.mean(patches, axis=0)

 # histogram stretching pre-processing
 def _histogramStretching(self, image):
 # a, b = min(image), max(image)
 a, b = np.percentile(image, 5), np.percentile(image, 95)
 l, u = 0, 255
 const = 1.0*(b*l - a*u)/(b - a)
 k = 1.0*(u-l)/(b-a)
 return [k*p+const for p in image]

 # plot average patch from training
 def _plotPatches(self):
 n_side = 2*self.patch_size+1
 keypoints = np.reshape([x[:-2] for x in feature_name],(self.num_keypoint
s,2))
 plt.figure(figsize=(16, 8))
 i = 1
 for point, patch in zip(keypoints[:,0], self.patches):
 plt.subplot(3,5,i)
 plt.imshow(np.reshape(patch,(n_side,n_side)), cmap = cm.gray)
 plt.title(point)
 plt.axis('off')
 i += 1

Appendix II: 5-Layer CNN Using Theano

In [4]:

(1) Parameters
numHiddenNodes = 600
patchWidth = 3
patchHeight = 3
featureMapsLayer1 = 32
featureMapsLayer2 = 64
featureMapsLayer3 = 128

For convonets, we will work in 2d rather than 1d. The facial images are 96x96
in 2d.
imageWidth = 96
n_train = np.round(X1.shape[0]*0.9)
train_X, train_y = X1[:n_train], y1[:n_train]
test_X, test_y = X1[-n_train:], y1[-n_train:]

n_train = np.round(X2.shape[0]*0.9)
train_X, train_y = X2[:n_train], y2[:n_train]
test_X, test_y = X2[n_train:], y2[n_train:]

Convolution layers.
w_1 = theano.shared(np.asarray((np.random.randn(*(featureMapsLayer1, 1, patchWid
th, patchHeight))*.01)))
w_2 = theano.shared(np.asarray((np.random.randn(*(featureMapsLayer2, featureMaps
Layer1, patchWidth-1, patchHeight-1))*.01)))
w_3 = theano.shared(np.asarray((np.random.randn(*(featureMapsLayer3, featureMaps
Layer2, patchWidth-1, patchHeight-1))*.01)))
Fully connected NN. - 12x12 - dimension of L3 (11) plus bias (1)
w_4 = theano.shared(np.asarray((np.random.randn(*(featureMapsLayer3 * 12 * 12, n
umHiddenNodes))*.01)))
w_5 = theano.shared(np.asarray((np.random.randn(*(numHiddenNodes, train_y.shape[
1]))*.01)))
params = [w_1, w_2, w_3, w_4, w_5]

(2) Model
theano.config.floatX = 'float64'
X = T.tensor4() # conv2d works with tensor4 type
Y = T.matrix()

 i += 1
 plt.show()

Get baseline score
training
mps = MeanPatchSearching(patch_size=9, search_size=5, stretch=True)
mps.fit(train_faces[:150], train_coordinates[:150])
predicting
predictions = mps.predict(test_faces)
mps.getSubmission('./Data/FKD_IdLookupTable.csv', feature_name)

Y = T.matrix()

srng = RandomStreams()
def dropout(X, p=0.):
 if p > 0:
 X *= srng.binomial(X.shape, p=1 - p)
 X /= 1 - p
 return X

Theano provides built-in support for add convolutional layers
def model(X, w_1, w_2, w_3, w_4, w_5, p_1, p_2):
 l1 = dropout(max_pool_2d(T.maximum(conv2d(X, w_1, border_mode='full'), 0.),
(2, 2)), p_1)
 l2 = dropout(max_pool_2d(T.maximum(conv2d(l1, w_2), 0.), (2, 2)), p_1)
 # flatten to switch back to 1d layers - with "outdim = 2" (2d) output
 l3 = dropout(T.flatten(max_pool_2d(T.maximum(conv2d(l2, w_3), 0.), (2, 2)),
outdim=2), p_1)
 l4 = dropout(T.maximum(T.dot(l3, w_4), 0.), p_2)
 return T.dot(l4, w_5) #T.nnet.softmax(T.dot(l4, w_5))

y_hat_train = model(X, w_1, w_2, w_3, w_4, w_5, 0.2, 0.5)
y_hat_predict = model(X, w_1, w_2, w_3, w_4, w_5, 0., 0.)

(3) Cost
cost = T.sqrt(T.mean(T.sqr(Y - y_hat_train))) # T.mean(T.nnet.categorical_crosse
ntropy(y_hat_train, Y))

(4) Minimization.
def backprop(cost, w, alpha=0.01, rho=0.8, epsilon=1e-6):
 grads = T.grad(cost=cost, wrt=w)
 updates = []
 for w1, grad in zip(w, grads):

 # adding gradient scaling
 acc = theano.shared(w1.get_value() * 0.)
 acc_new = rho * acc + (1 - rho) * grad ** 2
 gradient_scaling = T.sqrt(acc_new + epsilon)
 grad = grad / gradient_scaling
 updates.append((acc, acc_new))

 updates.append((w1, w1 - grad * alpha))
 return updates

update = backprop(cost, params)
train = theano.function(inputs=[X, Y], outputs=cost, updates=update, allow_input
_downcast=True)
predict = theano.function(inputs=[X], outputs=y_hat_predict, allow_input_downcas
t=True)

miniBatchSize = 1
def gradientDescentStochastic(epochs):
 print 'Training started @%s, buckle up!' %datetime.now()
 print 'Training set: %s, dev set: %s' %(train_y.shape, test_y.shape)

 start_time = time.time()

 start_time = time.time()

 for i in range(epochs):
 for start, end in zip(range(0, len(train_X), miniBatchSize), range(miniB
atchSize, len(train_X), miniBatchSize)):
 cost = train(train_X[start:end], train_y[start:end])
print 'cost: %.3f' %cost
 print '%d) %s: RMSE = %.4f' %(i+1, datetime.now(), np.sqrt(np.mean(np.sq
uare(test_y - predict(test_X)))))
 print 'Total training time = %.2f' %(time.time() - start_time)

gradientDescentStochastic(10)

start_time = time.time()
predict(test_data)
print 'predict time = %.2f' %(time.time() - start_time)

Appendix III: First Training and Predicting Strategy

In [17]:

################### Option 1. Lasagne 5-layer Model ###################

CNN for X1 training set () ##### #0.00518
net1 = getCNN(y1.shape[1])
net1.fit(X1.astype('float32'), y1.astype('float32'))
start_time = time.time()
y_hat1 = net1.predict(x_t)*48+48
print 'Prediction time: %.2f sec, y_hat1.%s' %(time.time()-start_time, str(y_hat
1.shape))
filename='./Data/mp1_' + datetime.now().strftime("%Y%m%d%H%M%S") + '.pkl'
pickle.dump([y_hat1], open(filename, 'w'))
release some memory by remove net1
del net1

CNN for X2 training set () ##### #0.00421
net2 = getCNN(y2.shape[1])
net2.fit(X2.astype('float32'), y2.astype('float32'))
start_time = time.time()
y_hat2 = net2.predict(x_t)*48+48 # rescale it back
print 'Prediction time: %.2f sec, y_hat2.%s' %(time.time()-start_time, str(y_hat
2.shape))
filename='./Data/mp2_' + datetime.now().strftime("%Y%m%d%H%M%S") + '.pkl'
pickle.dump([y_hat2], open(filename, 'w'))

################### Option 2. Theao 3-layer Model ###################

net2 = FacialDetector(n_output=y2.shape[1])
y2hat = net2.fit_predict(x_t=x_t, X=X2, y=y2, epochs=100, miniBatchSize=10)
del net2 #release some memory

net1 = FacialDetector(n_output=y1.shape[1])
y1hat = net1.fit_predict(x_t=x_t, X=X1, y=y1, epochs=100, miniBatchSize=10)

y1hat = net1.fit_predict(x_t=x_t, X=X1, y=y1, epochs=100, miniBatchSize=10)

################### assebmle results to get submission file ###################
def getSubmission(LookupTable):
 # create a dictionary for feature name indexing
 index2 = {feature2[x]:x for x in range(len(feature2))}
 index1 = {feature1[x]:x for x in range(len(feature1))}
 lookupRow = []
 with open(LookupTable) as csvfile:
 # read the lookup file
 lookupReader = csv.reader(csvfile, delimiter=',')
 lookupRow.append(lookupReader.next())
 for row in lookupReader:
 # get the prediction based on image ID and feature name, and attach
to the row
 image_id, fea = int(row[1])-1, row[2]
 location = y_hat2[image_id, index2[fea]]
 if fea in index1:
 location = (location + y_hat1[image_id, index1[fea]])/2
 lookupRow.append(np.append(row, location))
 lookupRow = np.array(lookupRow)
 # save row ID and location ID columns only to the submission file
 saveFile = 'submission_' + datetime.now().strftime("%Y%m%d%H%M%S") + '.csv'
 with open(saveFile, 'wb') as f:
 writer = csv.writer(f)
 writer.writerows(lookupRow[:,[0,3]])
 print 'Submission file saved as: %s' %saveFile

getSubmission('./Data/FKD_IdLookupTable.csv')

Appendix IV: Using Predictions to Fill in Missing Keypoints for Training

Submission file saved as: submission_20150806005853.csv

In []:

This code is from another ipython notebook we were running and the variable
names don't match with other parts of this notebook

4. Feature engineering: histogram stretching + gaussian blur + horizontal fli
p, partial-point set
train_data_p, train_labels_p = splitSet(train_data_st_bl_fl, train_labels_st_bl_
fl, full=False)
test_data_4 = test_data_3
#print '3. Histogram Stretch + Gaussian Blur + Horizontal Flip: %s - %s' % (tra
in_data_3.shape, train_labels_3.shape)

print 'Predict on partial-point training set and make complete training set'
start_time = time.time()
pred_labels = net_3.predict(train_data_p.astype('float32'))
print 'Partial-point Set Prediction time: %.2fs' %(time.time()-start_time)

Fill the missing coordinates from prediction
for i in range(0, pred_labels.shape[0]) :
 for j in range(0, pred_labels.shape[1]) :
 if np.isnan(train_labels_p[i,j]) : train_labels_p[i,j] = pred_labels[i,j
]

train_data_4 = np.concatenate((train_data_3, train_data_p), axis=0)
train_labels_4 = np.concatenate((train_labels_3, train_labels_p), axis=0)
print '4. Use predictions to fill in the missing keypoints: %s - %s' % (train_d
ata_4.shape, train_labels_4.shape)

Final Prediction and Submission
Now re-train with complete training set and predict on full-point dev data
print 'Training with entire training set'
net_4 = convonet(train_data_4, train_labels_4, 200, 100, 'train_4.pickle')

print 'Predict test set and make submission file'
start_time = time.time()
test_labels_4 = net_4.predict(test_data_4.astype('float32'))
print 'Test Set Prediction time: %.2f min' %((time.time()-start_time)/60.0)

getSubmission(test_labels_4*48+48, './Data/FKD_IdLookupTable.csv')

