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Abstract 
In the years since net neutrality first emerged as a nexus of policy debate, a substantial literature 
has emerged to model possible departures from today’s industry practices (see Cheng, et al. 2011, 
Choi and Kim 2010, Economides and Tåg 2009, Hermalin and Katz 2007, Musacchio, et al. 
2009). While theoretical approaches vary, each study is ultimately rooted in the classic building 
blocks of Bertrand and Cournot competition. This common foundation has yielded rapid gains to 
our understanding, but it is also related to at least three broad challenges.  First, as competition 
games are layered to depict various network exchanges, tractability is strained.  Second, studies 
lose generality as extra assumptions are added to capture the market power of network providers.   
Finally, the term neutrality obscures a substantial variety of alternatives to today’s industry. Most 
existing models can only compare two distinct regimes, making it hard to develop a holistic 
understanding of the larger neutrality space. 
 
Believing that these limitations are rooted in the very foundation of Bertrand and Cournot 
competition, we consider a novel, and radical, question: can these building blocks be adapted to 
better target the needs of network research? Our approach generalizes Cournot competition in a 
way that is fully consistent with existing theory, but provides a natural extension from a single 
market to more complex network environments.  To represent various neutrality regimes, we 
begin by formalizing the concept of a supply chain. This paradigm is both simple, abstracting the 
interaction of network players, and flexible, capturing key differences between regimes. Our main 
result extends Cournot competition to this setting, allowing us to compute prices at each stage of 
production.  Moreover, our method is highly tractable, transparently captures market power, and 
treats all technologies symmetrically, isolating the effects of market structure. 
 
Because of the flexibility of our theory, we may represent an unprecedented number of neutrality 
regimes in a universal model. In preliminary results, we compare three distinct regimes, 
identifying a number of effects that have not been previously highlighted in the literature.  If 
neutrality is replaced by a regime of passage fees – in which service providers must pay to access 
each network provider’s customers – a double marginalization effect dramatically increases 
prices and lowers welfare.  On the other hand, we consider a duopoly-price rule in which two 
network providers compete to sell transit to service providers.  This regime gives network 
providers nearly as much profit as the duopoly price rule, or even more in some cases, but 
without the dramatic welfare-loss.  Our results begin to paint a more comprehensive view of 
neutrality. In future work, we will study how each regime affects investment in both 
infrastructure and services. 
 



1 Introduction 
In the years since net neutrality first emerged as a nexus of policy debate, a substantial 
literature has emerged to model possible departures from today’s industry practices (see 
Cheng, et al. 2011, Choi and Kim 2010, Economides and Tåg 2009, Hermalin and Katz 
2007, Musacchio, et al. 2009). While theoretical approaches vary, each study is 
ultimately rooted in the classic building blocks of Bertrand and Cournot competition. 
This common foundation has enabled researchers to build a number of successful models 
in just a few years.  At the same time, these competition games can be related to at least 
three broad challenges that pervade the neutrality field. 
 
First, network users interact with network providers, service and content providers 
alike. As Bertrand and Cournot games are layered to depict these exchanges, tractability 
quickly becomes an issue. Complex expressions make it difficult to interpret results, 
constraining the range of assumptions that can be explored.  This both limits the realism 
of a model and makes it difficult to establish robustness. 
 
Second, network providers exercise considerable market power in the industry, elevating 
prices well above costs. In practice, capturing this phenomenon with standard 
competition games involves tradeoffs.  To prevent network providers from competing 
prices away to marginal cost, studies must employ extra assumptions, such as Hotelling 
differentiation (Hermalin and Katz 2007, Economides and Tag 2009) and captive 
consumers (Musacchio et al 2009).  Justifying a specific assumption about the 
relationship between network firms may be difficult.  Furthermore, there may be no way 
to know whether a result arises from market structure, or from the different treatment of 
network and service firms.  As a result, models lose generality and flexibility. 
 
Finally, and most importantly, the term neutrality obscures a substantial variety of 
alternatives to today’s regime. Various studies reveal several dimensions contained 
within the larger debate.  These include, for example, the direction of payments among 
network parties, the presence of multiple service classes, and the degree of discrimination 
within each service class.  Rather than a binary choice, in other words, we face a more 
general neutrality space.  Most existing models, however, can only compare two distinct 
regimes, and differing assumptions make it hard to develop a holistic understanding of 
the larger space. 
 
These limitations – related to tractability, realism, and scope – are not general problems 
of Bertrand and Cournot competition, but only of applying these games, which are well-
tailored to traditional markets, to the network environment.  At the same time, the near-
universality of these games makes them all-but-impossible to avoid when writing a model 
to study neutrality.  In response, this study explores a novel approach.  Instead of 
rearranging Bertrand and Cournot games into further models, we will scrutinize this very 
foundation, and ask whether traditional competition games can be adapted to better target 
the needs of network research. 
 



The first aim of this study, in other words, is to design a general purpose tool for 
modeling network environments.  While our framework is novel, it is also firmly 
grounded in the classic Cournot model.  Using a change of decision variables, we are able 
to provide a natural extension from a single market to more complex network 
environments. While this approach may seem unorthodox, our framework is fully 
consistent with existing theory, and behaves naturally in a variety of familiar scenarios. 
 
Before we can use our framework to compare neutrality regimes, each one must be 
encoded using a common set of primitives.  Such a language, or meta-framework, must 
be tractable, abstracting the interaction of network actors, as well as expressive, capturing 
the key differences between regimes.  Our approach balances these aims using the 
paradigm of a supply chain.  This is a powerful tool for studying neutrality, allowing 
payments to flow in arbitrary configurations among network actors. 
 
As we will demonstrate, many different regimes can be described in terms of a supply 
chain, highlighting the goods that are exchanged between network participants.  The links 
in the supply chain express how goods and services are sold from firm to firm, and their 
relationship to each other.  Moreover, such a model encapsulates key differences between 
regimes in a compact format, allowing a simple, graphical comparison. 
 
On top of our supply chain model, we will develop a generalized theory of Cournot 
competition.  By employing quantity competition throughout a supply chain, our 
framework will overcome the three major limitations of the neutrality field that we 
described above.  Because there are multiple ways to distribute profits across a supply 
chain for a given demand profile, we will develop axioms to identify unique prices at 
every point in the chain. 
 
Because of the flexibility of our theory, we may represent an unprecedented number of 
neutrality regimes in a universal model. In section 4, we will apply our theory to compare 
three distinct regimes, demonstrating a number of effects that have not been previously 
highlighted in the literature: 
 
Zero-Price Rule: We model a scenario in which service providers do not exchange money 
with network providers – a benchmark rule commonly used to represent neutrality in the 
literature. Our formulation is unique in that networks and services are treated 
symmetrically, so results are driven by solely by differences in market concentration and 
cost of entry. 
 
Uniform Passage Fees: We consider a framework in which service providers must pay 
network providers to access their customers, whether they are directly connected or 
not. We call such payments “passage fees” and discover a double-marginalization effect 
that dramatically increases prices and reduces welfare compared to the zero-price rule. 
Passage fees may be uniform, or we may adapt our framework to allow discrimination 
among specific service providers or classes of service. 
 



Duopoly-Price Rule: As an alternative to passage fees, we ask whether access networks 
would want to leave their peering agreements with other backbone providers and sell 
them transit instead. Transit prices would then be constrained by duopoly competition 
between access providers. We are surprised to find that this scenario provides network 
providers with nearly as much profit as uniform passage fees (and in some cases more 
profit), while maintaining nearly as much welfare as the zero-price rule. 
 
Taken together, these cases provide a newly comprehensive view into net neutrality, 
delineating alternate regimes and highlighting their pros and cons.  In future work, we 
will study how each regime affects investment in both infrastructure and services. 

2 Neutrality Regimes in the Economic Literature 
Within economics, three main lineages bear on the topic of net neutrality.  Not only do 
the methods vary between these, so do the actual regimes that they target for comparison.  
At least three industry scenarios can be identified in the literature, with each pair of these 
the subject of a separate economic lineage. 
 
Representing a neutral network, most studies employ what become known as the zero-
price rule (Economides & Tag 2009, Musacchio et al. 2009, Kramer & Wiewiorra 2010, 
Cheng et al. 2011, Choi & Kim 2010).  The common feature underlying these models is 
that network providers exchange payments solely with end-users.  Service providers pay 
nothing (hence, a zero-price) to connect to the network and communicate with their 
customers. 
 
The zero-price rule is a tremendously popular, though imperfect, depiction of today’s 
industry.  To be more precise, a service provider must enter a contract with some ISP in 
order to access the internet.  In this context, the network provider is said to sell transit to 
the service provider.  This good includes the right to send data to any destination on the 
internet, so a service provider need only purchase transit from a single ISP.  Although 
service providers pay for transit, competition among providers has long driven down 
prices (Musacchio et al. 2009).  In fact, transit prices fell an average of 61% each year 
between 1998 and 2010 (Norton 2010).  The zero-price rule can be viewed as an 
extrapolation of this trend. 
 
One strand of papers that uses the zero-price rule as a baseline arises from the classic 
economic model of two-sided markets.  In this framework, a network provider faces 
demand from consumers on one side, and demand from service providers on the other.  
Under the zero-price rule, the network provider can only charge a price from consumers.  
Under the non-neutral regime, the network provider can charge a separate fee against 
service providers. 
 
As mentioned above, service providers already pay network providers today, in the form 
of transit fees.  A key feature of the two-sided market studies, however, is that service 
providers must pay every network provider separately to communicate with their 
customers (Economides & Tag 2009, Musacchio et al. 2009).  Hence, unlike transit, 
which is the right to send data anywhere on the internet, network providers are selling 



just the right to reach their own customers.  In order to distinguish this right from transit, 
throughout this study, we will refer to it as passage.  Studies in the two-sided market 
lineage typically restrict network providers to choosing a single price for passage.  We 
will therefore refer to this scenario as a uniform passage fee regime. 
 
Economides and Tag present a two-sided market model that allows a duopoly of network 
providers (2009).  They argue that uniform passage fees are welfare-reducing compared 
to the zero-price rule, though consumers face lower prices and are better off.  Musacchio, 
et al. present a model in which N network providers can charge a uniform passage fee 
(2009).  They find that the welfare effects of this regime are ambiguous compared to the 
zero-price rule.  While the authors model more than one network provider, each one is 
assumed to enjoy a monopoly over their customer base, so the model is not targeted to 
consider what effect passage fees have on oligopolistic competition. 
 
Moving in another direction, a separate lineage of studies similarly begins with a zero-
price regime, but instead of introducing a single passage fee, imagines dividing the 
network into a base tier and a higher priority tier of service.  The relative qualities of each 
tier are then modeled using queueing theory.  Typically, the base tier remains free, but 
service providers must pay a passage fee in order to transmit through the higher tier.  We 
will label this scenario multiple service classes. 
 
In this vein, Kramer and Wiewiorra consider a monopolist network provider that can sell 
prioritized access to a continuum of content providers (2010).  They find the allowing 
such discrimination increases short-term welfare, as well as incentives to invest in 
network capacity and content innovation. 
 
Cheng et al. consider a scenario with two content providers.  Under multiple service 
classes, the network provider is allowed to sell priority access to one or both content 
providers, prioritizing their packets (2011).  They find that allowing such charges either 
increases welfare and consumer surplus, or leaves them unchanged. 
 
Choi and Kim similarly consider two content providers that use a monopolist network 
provider (2010).  Under multiple service classes, the network provider can sell a priority 
right to one content provider, and the authors argue that this increases consumer surplus.  
The effects on short-run welfare are ambiguous.  Incentives to invest in network capacity 
can be lower in the multiple service classes regime, because more capacity reduces the 
quality difference between service classes. 
 
Completing the circle, a third strand of the literature can be said to compare the uniform 
passage fee and multiple service classes regimes.  Hermalin and Katz model a network 
provider in a framework of product-line restrictions (2007).  The authors consider 
whether a planner would want to restrict the network provider to selling a single product, 
effectively creating a uniform passage fee scenario.  They find that the welfare effects of 
such product restrictions are ambiguous, but suggest that such restrictions will tend to be 
welfare-reducing in practice.  Unlike the previous studies mentioned, they do not model 
the zero-price rule. 



 
Figure 1 depicts the relationship of the three main lineages within the neutrality literature, 
and the three regimes they investigate. 

 
Figure 1: Major Net Neutrality Lineages 

3 A Cournot Theory of Supply Chain Behavior 
The previous section described three neutrality regimes found in the economic literature.  
As we have seen, researchers have been successful in writing models to compare pairs of 
these, but the disparate assumptions they employ make it difficult to compare results 
across lineages, or to gain a broader understanding of the neutrality space.  In contrast to 
these studies, we will construct our own modeling foundation, extending Cournot 
competition to a general supply-chain setting.  This work bears some resemblance to 
Salinger’s model of two vertically-arranged markets (1988).  Unlike his study, which is 
limited to a fixed arrangement of two exchanges, our model allows an arbitrary 
arrangement of exchanges within a supply chain.  Moreover Salinger’s technique requires 
firms in the upstream market to select their actions first, while our framework allows any 
timing of player decisions. 
 
Our work also builds upon a previous model by Laskowski and Chuang, in which 
Cournot competition is generalized to allow both network providers and service providers 
to select quantities to sell to a user market (2010).  The current study further generalizes 
Cournot competition to the more general setting of a supply chain. 
 
As we will detail below, our model of a supply chain corresponds closely to the 
traditional notion for manufactured products – goods are sold from firm to firm and 
assembled with other goods before being sold to consumers.  As we apply this framework 
to network neutrality, there are two features that may cause some concern, and require us 
to update our intuition.  First, many goods that we wish to model in the network 
environment are intangible.  To capture the core interactions relevant to neutrality, we 
will need to include services and contractual obligations, such as transit, as goods in the 
chain. 
 

Zero-Price 
Rule 

Uniform  
Passage Fees 

Multiple  
Service Classes 

Two-sided markets 
Economides & Tag 2009 
Musacchio et al. 2009 

Priority access 
Kramer & Wiewiorra 2010 
Cheng et al. 2011 
Choi & Kim 2010 

Product-line restrictions 
Hermalin & Katz 2007 



Second, network goods are typically not assembled in a physical sense.  For example, a 
service provider needs to buy transit before it can sell service to an end-user, but we do 
not normally think of transit as a part of the service product.  To resolve this issue, we 
will take a broad view of assembly to include any instance in which an input is required 
for a good to continue along the supply chain.  Thus, assembly denotes any requirement 
for a specific input, however it is used. 
 
The supply chain paradigm compels us to focus on the goods exchanged by network 
players, and their relationship to each other.  Thinking in terms of goods, instead of, say, 
contracts and fees, may take some getting used to.  Given a new type of fee, for example, 
we must ask what it is that a network player is paying for, and encode that as a good 
within the supply chain.  That good must then be assembled with other goods to signify 
where the fee is required.  As we will see, however, this approach is flexible enough to 
capture a great variety of neutrality regimes.  Moreover, we will be able to express the 
differences between different types of fees in a clear, graphical format. 
 
Once we formalize our notion of a supply chain in the next subsection, we will be ready 
to extend Cournot competition to run over this foundation.  Our use of Cournot 
competition provides a number of advantages over existing techniques.  First, it is 
mathematically elegant.  Expressions remain tractable, even as the supply chain grows to 
capture complex market scenarios.  We may also alter game timings, or add extra 
assumptions, for greater expressive power. 
 
Second, Cournot competition captures market power in a simple and transparent way.  To 
model a network duopoly, models based on price competition must employ extra 
assumptions so that network providers do not compete away prices to marginal cost.  
Hermalin and Katz (2007), and Economides and Tag (2009) differentiate network 
providers on Hoteling’s line.  Musacchio et al (2009) assume that consumers are held 
captive to a specific network provider.  Cournot competition similarly ensures that 
network providers make a profit, but without specific assumptions about how the 
technologies are related, or how users select a network.  By abstracting away from such 
details, the model remains more general. 
 
Finally, our framework uniquely allows networks and services to be treated 
symmetrically; it is entirely technology-agnostic.  This means that the distribution of 
profits is driven entirely by market structure, and is never an artifact of treating networks 
and services differently.  Put another way, our framework allows us to isolate the effects 
of the number of each type of firm or costs of entry, creating a valuable baseline for 
analysis. 
 
We will begin our treatment in the next subsection by defining a supply chain in terms of 
simple graph primitives.  Section 3.2 discusses Cournot competition in the context of a 
single market.  This will give us the chance to introduce notation and build the intuition 
we need for the general model.  In section 3.3, we will turn our attention to full supply 
chains, and sketch our most powerful results.  Finally, in section 3.4, we will use our 



main theorem to formally define a Cournot game.  Full technical details may be found in 
the appendix. 

3.1 The Network as a Supply Chain 
Mathematically, we define a supply chain, G, as a directed acyclic graph with nodes V 
and edges E, containing 
 

1. A set of source nodes, IV V⊂ , which we call inputs or input goods. 

2. A set of non-source nodes, consisting of a set of assembly nodes, AV V⊂  and a 

set of market nodes, MV V⊂ , which we depict with a triangle symbol.  We will 

call the incoming edges of each market node market edges, ME E⊂ . 

3. A unique sink, which may be either an assembly node or a market node, and 
which we call the consumer market , C V∈ . 

 
Abusing notation slightly, we will also use the variable denoting a graph to represent the 
set of all elements of the graph, so G V E= ∪ .  For each node, n, we will write 
inc( )n E∈  for its incoming edges.  Given a supply chain, G, we define a final product, d, 
as an induced subgraph of G, with the following properties: 
 

1. d includes the consumer market, and no other sinks. 
2. If an assembly node, a, is in d, inc( )a d⊂ . 
3. If a market node, m, is in d, exactly one edge in inc( )m  is in d. 

 
Let D be the set of all final products, and { : }H h D= → ℝ  be the vector space of real 

final product quantities.  Let dh  be the unit vector that assigns a quantity of 1 to final 
product d. 
 
We will also want to describe the flow of goods along the supply chain, from input to 
final product.  To do this, we may define a quantity flow, f, as an assignment of a quantity 
to every node and edge in G, :f G → ℝ , such that, 
 

1. The quantity of each node except the consumer market equals the total quantity of 
all outgoing edges. 

2. The quantity of a market node equals the total quantity of all incoming edges. 
3. The quantity of an assembly node equals the quantity of each individual incoming 

edge. 
 
For mathematical convenience, we will allow the quantities in a quantity flow to take on 
negative values.  Let F be the set of all quantity flows.  It is easy to check that F is a 
vector space where addition and scalar multiplication are over each component.  The 
following lemma is proved in the appendix. 
 
Lemma 1. F has dimension 1M ME V− + .   



 
For every set of final product quantities, there is a natural quantity flow that can be said 
to produce those quantities.  Specifically, given a vector of final product quantities, 
h H∈ , we may define ( )hφ  as the quantity flow that assigns to each component, g G∈ , 
the total quantity of final products that include that component: 
 
 

|

( )( ) ( )
d D g D

h g h dφ
∈ ∈

= ∑ , for all g G∈  (1) 

 
In particular, we will let ( )d du hφ=  be the flow that produces a unit quantity of final 

product d.  It is important to note that in general, φ  is not injective. This means that given 
a set of final product quantities, we can derive the unique quantity flow that produces 
those quantities, but a single quantity flow could be associated with more than one vector 
of final product quantities. 

3.2 A single Cournot market 
Before presenting our general Cournot framework, we will begin in this subsection with 
just a single market node.   This scenario corresponds to the classic Cournot model, and 
we will take the opportunity to introduce our own notation.  This will give us the intuition 
we need to extend the game over an entire supply chain. 
 
In the classic Cournot setup, n firms produce imperfect substitute products and choose 
quantities.  Prices are determined by an inverse demand function, { }it=t , where 

1( ,..., )i nt x x  is the price of firm i’s product, and ix  is the quantity firm i produces..  We 
will assume that there is a maximum total quantity, N, such that the total profit of all 
firms may be non-negative. 
 
So far, we have given a more-or-less standard description of Cournot competition, 
focusing on how much of the market the firms supply.  For our purposes, however, we 
will find it profitable to focus instead on how much of the market the firms decide to 
leave unsupplied.  Define the quantity restriction for firm i, ˆix , to be how many fewer 
customers the firm supplies than it would have if all customers were divided equally: 
ˆ /i ix N n x= − .  This form is chosen so that the total quantity restriction is the number of 

unsupplied consumers: 
 
 ˆi ix N x= −∑ ∑ . (2) 

 
Notice that quantity restrictions may be negative, so there is a one-to-one correspondence 
between quantities and quantity restrictions.  This means that our game is fully equivalent 
to regular Cournot competition in a mathematical sense.  The change, in other words, is 
merely one of emphasis, highlighting the total number of consumers as a reference point.  
While our change of decision variables has no effect on a single market, it does provide 
an intuitive way to extend Cournot competition over a supply chain. 
 



We will represent this basic Cournot market graphically with the triangle symbol, below.  
In this graph, which we will explain in the next section, the lines represent each good, iG , 

entering the market, with the corresponding quantity restriction labeled alongside. 
 

 
 
If our change of decision variables strikes the reader as somewhat artificial, rest assured 
that it may be considered temporary.  Quantity restrictions will give us a natural way to 
join Cournot games together to describe complex supply chains.  In the end, though, we 
will see that firm’s strategy can be seen as a solution to a regular Cournot game, and our 
framework may be rephrased in terms of quantities. 

3.3 General Model 
Building on the previous subsection, we are now ready to extend Cournot competition to 
an entire supply chain.  Our procedure involves a number of steps.  Very briefly, we must 
first specify how a quantity restriction reduces the quantity flow in different parts of a 
supply chain.  These reductions are summed together for all quantity restrictions to find 
the resulting flow.  Because restrictions are relative to a maximum amount, there is never 
a mismatch between decisions in different parts of the chain.  When firms in one market 
node reduce their output, for example, firms in other parts of the supply chain 
automatically reduce their outputs to compensate. 
 
After computing quantities, we are ready to compute prices in each market node.  This is 
straightforward for a single market, since there is a unique set of prices that fulfills 
demand.  Things become more complicated in a supply chain, however, since prices can 
be increased in one node and decreased in other nodes without changing the prices of the 
final products.  We therefore take an axiomatic approach, adding further assumptions to 
constrain the set of possible prices.  Our central theorem uses four assumptions to 
identify a unique set of prices at each stage of production.  This will allow us to use our 
framework in much the same way as traditional Cournot competition to construct games. 
 
Consumers are represented by an inverse demand function, { } , :d d D dr r H∈= →r ℝ , 

where ( )dr h  represents the price of final product d as a function of final product 

quantities h. 
 
Because firms in our model will make decisions at the granularity of quantity flows, and 
cannot in general control the quantity of individual final products, we will assume that 
demand only depends on the quantity flow.  Specifically, given two vectors of final 

1G  

nG  

…
 

1̂x  

ˆnx  

…
  C 



product quantities, 1 2,h h H∈ , produced by the same quantity flow, 1 2( ) ( )h hφ φ= , we 

assume 
a) The resulting price vectors are equal, 1 2( ) ( )h h=r r .   

b) The resulting total revenues are equal, 1 1 2 2( ) ( ) ( ) ( )d d
d D d D

h d r h h d r h
∈ ∈

=∑ ∑ .   

According to the next lemma, which is proved in the appendix, these assumptions let us 
describe demand in terms of prices exerted at each market edge: 
 
Lemma 2: The inverse demand can be expressed in terms of a price exerted at each 
market edge, where the price of each final product is the total of the prices charged at its 
edges:  There exists { } , :

Me e E et t F∈= →t ℝ , such that ( )( ) ( )
M

d ee d E
r h t hφ

∈ ∩
=∑  for all 

d ,D h H∈ ∈ . 
 
Note that in general, the market-edge prices, { }

Me e Et ∈ , are not unique (in the proof of the 

lemma, the choice of 1θ −  is not unique).  For example, it may be possible to increase the 
prices in one market while decreasing the prices in another market by the same amount, 
without affecting the price of any final products.  Nevertheless, we will usually specify 
demand in terms of market-edge prices, bearing in mind that multiple specifications may 
be equivalent. 
 
Analogously to the single stage game, we will have firms choose quantity restrictions, 
and then use these to compute the quantity flow.  To every market edge, Me E∈ , we 

associate a quantity restriction, ˆex , and write ̂x  for the vector of all such restrictions.  We 
would like each restriction to decrease the quantity flow at its specific edge, but in order 
to do this, it may be necessary to reduce the flow along other edges to maintain a valid 
quantity flow.  In general, there are many ways that a restriction at one edge can affect 
other parts of a supply chain, [does any linear map automatically work with theorem 1?] 
and our chief criterion is that this process be intuitive.  Our method will be based on a 
simple rule: in essence, a quantity restriction will be split evenly each time the supply 
chain branches. 
 
To achieve this, we first define the upstream restriction, ˆcw , for each supply chain 

component c G∈ , recursively as follows: 
 

1. For any node, v V∈ , ˆ ( )w v is the total of the upstream restrictions of all incoming 
edges. 

2. For any edge, e E∈ , ˆ ( )w c  is the upstream restriction of its parent node, divided 
by the number of outgoing edges that parent has, and plus the edge’s own quantity 
restriction, ̂ ex , if e is a market edge. 

 
We assume that it is the upstream restrictions that determine the relative flow of each 
input to a market node.  First, we assume that there is a maximum magnitude of quantity 
flow, N, such that the total profit of all final products is non-negative, 



( )max ( ) 0d dd Df F
N f x t d

∈∈
= ≥∑ .  Next, we define the quantity flow induced by x̂ , 

f F∈ , as the unique quantity flow such that, 
 

1. ˆ( ) Cf C N w= −  
2. For any two incoming edges of the same market node, a and b, 

ˆ ˆ( ) ( ) b af a f b w w− = − .  Equivalently, for each market node, Mm V∈ , there exists 

a constant mc  such that if e is an incoming edge of m, ˆ( ) m ef e c w= − . 

 
Let : MV Fω →ℝ  be the map that takes each restriction vector to the quantity flow it 
induces.  It is easy to see that the ˆ{ }ew are linear in ̂x , and f is affine in the ˆ{ }ew , hence 

ω  is an affine transformation.  In general, we will see that ω  is surjective but not one-to-
one.  The following lemma will characterize the set of restrictions that result in the same 
flow. 
 
Lemma 3:  Given any flow, f F∈ , and a set of total restrictions for each market, 

ˆ ,m Ms m V∈ , with ˆ ( )ms N f C= −∑ , there exists a unique restriction vector, x̂ , such that 

inc( )

ˆ ˆe m
e m

x s
∈

=∑  for all 'm m≠  and ˆ( ) fω =x .  These vectors make up the inverse image, 

1( )fω− . 
 
A proof is given in the appendix.  To represent the induced quality flow at a market edge, 
e, we will use the corresponding quantity restriction variable without the hat, ( )ex f e= , 

with { }
Me e Ex ∈=x .  Having computed quantities, we are ready to compute prices at each 

market node.  Mirroring our representation of demand, we will find it convenient to work 
with marginal prices [is that the right term for it?  I mean the markup over the price paid 
to acquire the good].  For each market edge, Me E∈ , let the marginal price at that edge be 

ex , represented by a bar over the corresponding restriction variable, with { }
Me e Ex ∈=x .  

The total price of a final product, d, is then the sum of the marginal prices at each of its 
market edges, 

M

e
e d E

x
∈ ∩
∑ . 

 
In classic Cournot competition, there is a unique set of prices such that demand is 
fulfilled and consumers are indifferent between purchasing all products.  Unfortunately, 
while the above lemma assures us that there is a set of market-edge prices that fulfill 
demand, it will not, in general be unique.  It may be possible, for example, to subtract 
some amount of money from the prices at one market node, and add it to the prices at 
another market node while preserving all final product prices. 
 
Because of this, we will need more assumptions to identify the most natural set of 
market-edge prices, as a function of quantity restrictions.  Our approach will use the 
following four: 
 



1: Demand is fulfilled, d du u⋅ = ⋅x t  for all d D∈ . 

2: When the domain is restricted to a fixed quantity flow, f, prices are linear in 
quantity restrictions, ̂x . 
3: If the total restriction at any market node is zero, changing the restrictions at that 
node while maintaining the total quantity restriction does not affect the sum of the 
revenues at all other market nodes. 
4: If the total restriction at any market node is zero, and the restrictions at all other 
nodes are fixed, the maximum total profit at that node is zero.  That is, for any market 
node Mm V∈ , with edges m ME E∈ , given restrictions at all other market nodes, 

0
/ˆ{ }

M me e E Ex ∈ ,  0ˆ ˆ ˆ , /
max 0

e e M m
e ex x e E E

x x
= ∈

=∑x
. 

Theorem 1: Given a set of quantity restrictions, x̂ , with non-zero total, ˆ 0e ≠∑x , such 

that the total flow at each market node is non-zero, there exists a unique price function, 
: M MΕ → Εx , such that assumptions 1-4 are fulfilled. 

 
The complete proof is given in the appendix. 

3.4 Game Definition 
Theorem 1 allows us to use our Cournot framework in much the same way as we would 
use traditional Cournot competition.  To complete our treatment and define a game, we 
must specify what player owns a good at each part of the supply chain.  We will say that 
two graph edges or assembly nodes, 1 2, \ Mc c G V∈  are owner-continuous if there is a 
path that includes both that does not include any market nodes in between the elements.  
This is an equivalence relation, and the resulting equivalence classes denote parts of the 
supply chain between market nodes, in which a good must be owned by a single player. 
 
Formally, we may define a Cournot supply chain game as an ordered 4-tuple, ( , , , )G Y αt , 

consisting of a supply chain, G, a compatible inverse demand function, { ( )}
Me e Et f ∈ , a set 

of players Y, and a ownership map, : \ { }MG V Y Cα → ∪ , such that if graph elements  

1 2, \ Mc c G V∈  are owner-continuous, 1 2( ) ( )c cα α= , and ( )c Cα =  if and only if the 

element c is owner-continuous with the consumer node.  Each player, y Y∈ , selects a 

quantity restriction for each market edge Me E∈  with ( )e yα = .1  These quantity 

restrictions determine a unique quantity flow, f, and a unique set of market edge prices, 
x , according to Theorem 1.  Finally, the payoff to player y Y∈  is the sum of the 

revenues at each market edge she owns, 
, ( )

( )
M

e
e E e y

f e x
α∈ =
∑ . 

4 Network Neutrality Analysis 
In the previous section, we presented a formal supply-chain description, and developed a 
natural way to extend Cournot competition over an entire supply chain.  With these tools 

                                                 
1 Throughout this study, we will assume that players select their quantity restriction simultaneously.  The 
timing may be altered, for example, to denote aggressive players. 



in hand, we now turn our attention to the study of net neutrality.  We will examine a 
series of neutrality regimes, inspired by the literature, depicting each as a supply chain.  
This will require us to identify the goods exchanged between network actors, and where 
each is required on the path to a complete final product.  We will then apply our Cournot 
theory to compute equilibria, allowing us to compare prices, welfare, and other metrics. 
 
In order to tie all of our supply chains together, each will share a common set of players, 
consisting of 2 network providers, NP1 and NP2, and m service providers, SP1,…,SPm.  
Each network provider, NPi is the owner of a network input, Net i.  Similarly, each 
service provider, SPj is the owner of a service input, Ser j.  Other inputs may be modeled 
to represent contractual obligations that occur in different regimes.  We will use the 
variable ix  to represent the quantity of Net i and jy  to represent the quantity of Ser j.  

Because a final product will always be built from one network and one service, we will 
always have i jx y=∑ ∑ .  Although our theory admits a highly general demand 

function, for this analysis we will use a simple linear demand: 1 1ij i jt x y= − = −∑ ∑ . 

4.1 Zero-price rule 
As we described in section 2, most studies employ a zero-price rule as a benchmark 
representing a neutral network.  The key feature common to these models is that service 
providers do not exchange payment with network providers in order to access customers.  
Thus, from a supply chain perspective, we need only consider two goods: a network good 
that is sold from a network provider to the end-user, and a service good that is sold from 
a service provider to the end-user.  We depict these goods as being assembled together by 
the end-user, which ensures that equal amounts of network and service are produced. 
 
Our supply chain for the zero-price rule is pictured below.  In this diagram, inputs are 
presented at the left, each labeled in a rectangle.  Market nodes are depicted as triangles, 
with a quantity restriction labeled on each incoming edge.  The consumer node, in this 
case, and assembly node, is pictured on the right, labeled by a C.  As we described in our 
theory sections, each firm must choose a quantity restriction instead of a quantity.  Let 
each service provider j restrict its input by ̂ jy , and let each network provider i restrict its 

network input by ̂ ix . 

 

Serv 1 

Serv m 

…
 

1ŷ  

ˆmy  

…
   

Net 1 

Net 2 

1̂x  

2x̂  

  

C 



The total quantity of all final products is ˆ ˆ1 i jx y− −∑ ∑ ,  and inverse demand may be 

written, ' 'ˆ ˆ ˆ ˆ( , ) 1ij i jt x y= − −∑ ∑x y  for all i,j.  Since the profits in each market are 

proportional to the total restriction there, we may compute the price for network i to be 
ˆi ix x=∑ , and the price for service j to be ˆj jy y=∑ .  These may also be written in 

terms of quantities as, 
ˆ ˆ1 , 1i j j i j jx x y y y x= − − = − −∑ ∑ ∑ ∑  

This relation suggests that the two sides of the market interact by exerting a simple price 
on each other, exactly what we would expect for firms in a vertical arrangement.  In fact, 
in the case that there is one network provider and one service provider, the game is 
equivalent to one in which both firms select prices, and the familiar double-
marginalization result emerges.  Thus, our framework behaves in a very natural way in 
this scenario. 

NPi makes profit, 
ˆ1

ˆ ˆ
2i

j
NP i i i k

k

y
x x x xπ

 −
= = −  

 

∑ ∑  with first order condition, 

ˆ1
ˆ ˆ 0

2
j

i k
k

y
x x

 −
− − =  

 

∑ ∑ .  SPj  makes profit 
ˆ1

ˆ ˆ
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i
SP j j j k

k

x
y y y y

m
π

 −
= = −  

 

∑ ∑  with 

first order condition, 
ˆ1

ˆ ˆ 0i
j k

k

x
y y

m

 −
− − =  

 

∑ ∑ .  These can be solved for the 

equilibrium,  
 

 
2

ˆ ˆ,
(3 2) (6 4)j i

m
y x

m m m
= =

+ +
 (3) 

 

 
2

,
3 2 3 2i j

m
x y

m m
= =

+ +
 (4) 

 
2

,
3 2 3 2i j

m
x y

m m
= =

+ +
 (5) 

 
2 2

2
,

3 2 3 2i jNP SP

m

m m
π π   = =   + +   

 (6) 

 
Let zpp  be the price of all final products for the end user under the zero-price rule.  This 

is given by, 
 

 
2

3 2zp i i

m
p x y

m

+= + =
+

 (7) 

 
Welfare under this regime, zpω , may be written,  

 



 2
2

4 ( 1)
(1 ) / 2

(3 2)zp

m m
p

m
ω += − =

+
 (8) 

 
For large m, this equilibrium approaches the familiar Cournot equilibrium with 2 firms, 
 
 1/ 3, 0i jx y= =  (9) 

 1/ 3, 0i jx y= =  (10) 

 1/ 9, 0
i jNP SPπ π= =  (11) 

4.2 Uniform Passage Fees 
In this section, we consider a widely-discussed scenario, in which each network provider 
begins directly charging service providers a fee before allowing them to reach its 
customers.  From a supply chain perspective, each ISP creates a right of access to its own 
customers, which we call passage in order to distinguish it from transit.  Unlike transit, a 
service provider must purchase passage from every network provider with customers it 
transmits to. 
 
When incorporating passage into our Cournot framework, a key challenge is ensuring 
that each service provider purchases the right amount of passage from each network 
provider, corresponding to the number of end-users connected to that provider.  Our 
model provides a convenient way to accomplish this: Each service provider can choose 
the right amount of each passage good in an internal market.  In effect, we will allow 
each service provider to sell passage to itself, meaning that no money will be exchanged 
between players.  The restrictions in this internal market will be set to ensure the proper 
amount of each passage good, and the total restriction will be zero, ensuring that this 
market does not affect the service provider’s profits. 
 
Our strategy is shown in more detail in the supply chain below.  As passage goods move 
along this supply chain, they are first sold from a network provider to a service provider.  
They next enter an internal market, in which each service provider i selects between 
passage goods, adding quantity restrictions 1 2ˆ ˆ{ , }i iv v , which we will compute to ensure the 

proper amount of each good, with 1 2ˆ ˆ 0i iv v+ = .  We will assume that the price of a final 

product does not depend on which passage input it includes.  This will ensure that the 
total price of each passage input is the same when it is combined with a service input, and 
each service provider therefore charges a single price at the end-user market. 
 
If our methodology strikes the reader as unorthodox, note that when we restrict to our 
linear demand function, our model is fully equivalent to one in which network providers 
select prices for passage and charge these to service providers.  It would be possible to 
use prices in this way for a general demand function, but our use of internal markets 
allows us to maintain a consistent treatment of markets as Cournot. 



 
 
Claim 1:  The equilibrium solution for the Uniform Passage Fees supply chain is as 
follows.  Prices are given by, 
 

 
3 1

ˆ ˆ ˆ, ,
2(3 1) 2(3 1) (3 1)

m m
x w y

m m m m
= − = =

+ + +
 (12) 

 
With quantities, 
 

 
1 1

, , ,
2(3 1) 3 1 2(3 1) 2(3 1)i i ij i

m m
x y v w

m m m m
= = = =

+ + + +
 (13) 

 
And prices, 
 

 
1 3

, , , 0
3 1 3 1 3 1i i i ij

m m
x y w v

m m m
= − = = =

+ + +
 (14) 

 
A proof is given in the appendix.  The price for end users in the uniform passage fees 
regime, upfp , is given by,  
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which is considerably higher than the price under the zero-price rule, 
2

3 2

m

m

+
+

.   In fact, in 

the limit that the service industry is fully competitive, m → ∞ , the price for end-users is 
twice as high under uniform passage fees. 

Moreover, the price increase compared with the zero-price rule, 
23

(3 1)(3 2)

m

m m+ +
, 

increases with m, meaning that the extra price from the move away from neutrality is 
greatest when the service market is competitive. 
 
It is also interesting to note that the price for network service in the end-user market is 
actually negative – network actually pay end-users to select their networks.  Intuitively, it 
is better for a network provider to earn revenue by charging service providers, knowing 
that this lowers the demand for both networks easily.  At the same time, the provider pays 
end-users hoping to establish as much market share as possible. 
 
A similar effect occurs in the familiar credit card market.  Credit companies set prices for 
card-holders to zero, even offering incentives to make the price effectively negative, 
preferring to charge positive fees from merchants and other sources. 
 
Equilibrium profits are given by, 
 

 
2

2 2

1
,

(3 1) (3 1)i iNP SP

m

m m
π π= =

+ +
 (16) 

 
Welfare in this regime, upfω , may be written,  
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2
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5 2
(1 ) / 2

2(3 1)upf dp

m m
p

m
ω += − =

+
 (17) 

 
This is considerably lower than welfare under the zero-price rule.  In fact, in the limiting 
case of a fully competitive service industry, welfare is only 5/8 as high. 

4.3 Duopoly price rule 
To some extent, the neutrality debate concerns the network providers’ desire to extract 
money from service providers.  Passage fees are a widely-discussed method for network 
providers to accomplish this, but they are not the only method.  In this section, we 
consider what would happen if the network providers rewrote their peering agreements 
with other ISPs, and began to charge them money for interconnection.  This would result 
in duopoly competition, in which each service provider would need to buy transit from 
one of the two network providers.  This scenario is pictured in the supply chain below. 



 
Claim 2: The equilibrium for the Duopoly-price rule supply chain is as follows: 
Equilibrium quantities are, 
 

 
3 3 3

, ,
2(5 3) 5 3 2(5 3)i i i

m m
x y w

m m m
= = =
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With equilibrium prices, 
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m m
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m m m
= = =
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A proof is given in the appendix.  Let dpp  be the price of all final products for the end 

user under the duopoly-price rule.  This is given by, 
 

 
2 3

5 3dp i i i

m
p x y w

m

+= + + =
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 (20) 

 
which is strictly larger than the end-user price under the zero-price rule, but smaller than 
the end-user price under uniform passage fees.  As before, the extra price compared to the 

zero-price rule, 
22 3 2

5 3 3 2 (5 3)(3 2)

m m m

m m m m

+ +− =
+ + + +

, increases with m.  In other words, 

the increase in price from moving to the less neutral regime is most pronounced when the 
service industry is competitive. 
 
Equilibrium profits are, 
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Welfare in this regime, dpω , may be written,  
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2

3 (7 6)
(1 ) / 2

2(5 3)dp

m m
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m
ω += − =
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 (22) 

 
The loss in welfare compared to the zero-price rule, dp zpω ω− , similarly increases with m.  

This means that the welfare loss from non-neutrality is most pronounced when the 
service industry is competitive. 

4.4 Comparison of Neutrality Regimes 
In the first graph below, we compare the total end-user price across all three regimes we 
analyze.  Much of the neutrality debate centers around the possibility that network 
providers introduce passage fees.  As the graph shows, the end-user price under this 
regime is considerably higher than the two alternatives we tested.  This is due to the 
double-marginalization effect we identified previously.  Prices are also elevated under the 
duopoly-price rule, but by a far smaller amount.  In this scenario, network providers 
compete in a partially vertical arrangement.  Restricting quantity in the network market 
also reduces a competitor’s output in the transit market, and vice-versa, partially aligning 
incentives. 
 

Figure 2: End-user prices under three neutrality regimes 
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In the next figure, we plot network provider profits under our three neutrality regimes.  
As one might expect from the elevated prices, network providers earn higher profits 
under both uniform passage fees and the duopoly price rule.  It is interesting to note that 
the scenario preferred by the network providers depends on the number of service 
providers.  When the number of service providers is small, they are able to extract higher 
rents, squeezing the potential profit margins of the network providers.  Under uniform 



passage fees, however, double-marginalization by network providers prevents service 
providers from charging high prices, somewhat counteracting this effect.  For this reason, 
uniform passage fees give network providers a particular advantage when the service 
market is concentrated. 
 
Under a competitive service market, on the other hand, service prices drop, and the 
duopoly price rule gives network providers an advantage.  Their partially vertical 
arrangement aligns incentives, and improves their long-run profits. 
 

Figure 3: Network provider profits under three neutrality regimes 
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The next graph depicts service provider profits in our regimes.  As expected, profits fall 
as the service industry becomes more competitive.  Furthermore, there is a clear and 
dramatic difference in service profits between the three regimes, with the zero-price rule 
providing the most profits, and uniform passage fees the least. 

 
Figure 4: Service provider profits under three neutrality regimes 
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Finally, we may compare welfare between our regimes in the graph below.  The zero-
price rule features the highest welfare.  By comparison, uniform passage fees result in a 
dramatic drop in welfare, owing to the double-marginalization effect.  The duopoly price 
rule, however, appears as an attractive alternative, producing nearly as much welfare as 
the zero-price rule. 
 

Figure 5: Total welfare under three neutrality regimes 
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5 Discussion 
At first glance, our supply chain framework may appear to be a complex way to arrive at 
net neutrality results.  Certainly, a lot of machinery goes into developing our Cournot 
theory.  The rewards, however, are considerable.  We are able to treat a great variety of 
regimes under a uniform framework, with tractable expressions, potential for further 
expressive assumptions, and a natural treatment of market power.  Moreover, our 
framework is technology-agnostic, guaranteeing that results are driven exclusively by 
market structure, not specific assumptions about technologies.  Through these efforts, we 
are able to start building a more comprehensive picture of the larger neutrality space. 
 
Moreover, our study’s potential for broader impact is tremendous.  Supply chains exist in 
countless other industries, and our framework provides a general-purpose tool that can be 
put to use in many scientific analyses.  By using a demand function calibrated with 
empirical measurements, managers may apply our framework to predict behavior under 
realistic market conditions.  Regulators too, may find potential in our theory, 
understanding the effects of mergers in supply-chain industries. 
  
Our study of net neutrality has provided fertile ground in which to test our Cournot 
theory.  Much of the neutrality debate has been driven by a seemingly straightforward 
question: what would the effects be of abandoning net neutrality in the internet.  By 
comparing a larger number of regimes in a unified framework, our study suggests that the 
answer depends on exactly what type of regime replaces neutrality. 
 



As we have seen, uniform passage fees create a double-marginalization effect that drive 
up prices and considerably reduce welfare.  At the same time, our analysis points towards 
a duopoly-price rule as an attractive alternative.  Such a regime produces nearly as much 
welfare as the zero-price rule, which network provider extract nearly as much, or 
sometimes even more, profit as uniform passage fees allow.  
 
As we continue to pursue our research, we will explore still more examples of neutrality 
regimes, and also add new metric to use in their comparison.  In particular, we will soon 
begin to study incentives for firms to invest in service innovations and network upgrades 
under each regime.  Through these efforts, we aim to build a fuller picture of the larger 
neutrality space. 
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7 Appendix 
Proof of Lemma 1. Suppose that we are given values for a flow f at C and at all 
incoming edges except one for each market node.  We may then induct backwards to 
compute the flow at any component, c.  If c is a node, and we know the flow at its 
outgoing edges, the flow at c must be the sum of these.  If c is a non-market edge, and we 
know the flow at its child node, the flow at c must be the same value.  If c is a market-
edge, and we know the flow at its child node, we are either given the flow at c by 
assumption, or we may uniquely compute it since the flow at c’s child node must be the 



sum of the flows at its incoming edges.  Finally, we have specified  1M ME V− +  values 

by assumption, and any choice of these values yields a different flow, so this must be the 
dimension of F.  □ 
 
Proof of Theorem 1. Let / { ' , ' }F f f F f f= ∈ ⊥  be the orthogonal complement of f in 

F.  Choose a basis, { }ig for /F f .  For each market node, Mm V∈ , let m Mf ∈Ε  be the 
vector that’s equal to f at m’s incoming edges, and zero everywhere else.  As before, let 

: MFθ → Ε , ( )( ) ( )f e f eθ = , be the orthogonal projection taking flows into MΕ . 
 
Lemma 4: { ( )} { }i mg fθ ∪  is a basis for MΕ . 
 

Proof. We first show that { ( )} { }i mg fθ ∪ are linearly independent.  The { }ig  are 

linearly independent, and θ  is a one-to-one linear transformation so the { ( )}igθ  are 

linearly independent.  The { }mf  are also linearly independent, so it is sufficient to 

show that no linear combination of the { }mf  yields a non-zero linear combination of 

the { ( )}igθ , or equivalently, ( ')fθ  for some ' /f F f∈ .  Assume for contradiction 

that there is such an ' /f F f∈ , with ( ')
M

m m
m V

f a fθ
∈

= ∑  for some constants, { }ma .  

Without loss of generality, we may scale f’  so that '( ) ( )f C f C= .  Assume for 
induction that '( ) ( )f c f c=  for some graph component c.  If c is an edge, and n is its 
parent node, to be valid, the flow at n must be the flow at c times the number of n’s 
outgoing links, so we have '( ) ( )f n f n= .  If c is an assembly node, the flow at any 
incoming edge, inc( )e c∈  must be the flow at c, so we have '( ) ( )f e f e= .  Finally, if 

c is a market node, we know that '( ) ( ')( ) ( ) ( )m m c cf e f e a f e a f eθ= = =∑  for all 

inc( )e c∈ .  But for 'f  to be a valid flow, we must have 

inc( ) inc( )

'( ) ( ) '( ) ( )c c
e c e c

f e a f e f c f c
∈ ∈

= = =∑ ∑ .  Since f is a valid flow, 
inc( )

( ) ( )c
e c

f e f c
∈

=∑  

and therefore 1ca = .  Hence, '( ) ( )f e f e=  for all inc( )e c∈ .  We may conclude that 

'f f= , contradicting ' /f F f∈ . 

Finally, since F has dimension 1M ME V− + , /F f  has dimension M ME V− .  

Thus, this is also the number of the { ( )}igθ , while there are MV  of the { }mf , for a 

total of ME  linearly independent vectors.  This is also the dimension of MΕ , so 

{ ( )} { }i mg fθ ∪  is a basis for MΕ .  □ 

 
First, assume that the price function x  fulfills assumption 1.  Since the price of each final 
product is the same under price vectors x  and t , and the { }du span F, the total price of 

any flow must be the same as well. 
 
 ' 'f f⋅ = ⋅x t  for all 'f F∈  (23) 



 
Since the vectors { ( )} { }i mg fθ ∪ form a basis for MΕ , x  is uniquely identified by its dot 

products with these vectors.   Furthermore, x  may be written as a linear function of these 
dot products.  Since the ig  lie in F, we have ( )i i ig g gθ⋅ = ⋅ = ⋅x x t  for all i.  mf⋅x  is 

simply the revenue at market node m, which we label mπ .  Moreover, we have 

m m mf f fπ = ⋅ = ⋅ = ⋅∑ ∑ ∑x x x .  As long as this equals f⋅t , equation (23) will hold 

for f as well as { }ig , and therefore all of F .  Thus, any set of revenues, { }mπ , with 

m fπ = ⋅∑ t  identifies a unique x  fulfilling demand over F .  We therefore need only 

show that there exists a unique set of market node profits, { }mπ , with m fπ = ⋅∑ t , such 

that the resulting price function x  fulfills assumptions 2,3,and 4. 
 
Next, assume a function { }mπ with m fπ = ⋅∑ t , such that the resulting price function 

fulfills assumption 2.  Fix a flow, f.   By Lemma 3, for each market node, m, we can 
uniquely choose a restriction vectors, ˆ mu , such that

inc( ')

ˆ ( ) 0m
e m

e
∈

=∑ u  for all 'm m≠ , and 

ˆ( )m fω =u .  For a general restriction that induces f, 1ˆ ( )fω−∈x , let inc( )

ˆ

ˆ
M

e
e m

m
e

e E

x

x
α ∈

∈

=
∑

∑
 be the 

fraction of the total restriction located at market node m.  Since 1( )fω−  is an affine 

space, the affine combination ˆ
M

m m
m V

α
∈
∑ u  is also in 1( )fω− .   Furthermore, the total 

restriction at a market node m for this vector is 

inc( ) inc( )

inc( ) inc( )

ˆ ˆ

ˆ ˆ ˆ( ) ( ) ( )
ˆ ( )

M

M

e e
e m e m

m m m e
e m e E e me

e E

x x

e e f C x
x f C

α ∈ ∈

∈ ∈ ∈
∈

= = =
∑ ∑

∑ ∑ ∑
∑

u u , which is the same as for 

x̂ .  By Lemma 2, there is only one vector with this property, so ̂ ˆ
M

m m
m V

α
∈

= ∑x u .  

 
Since prices, and therefore profits, are linear within this domain, we may write the 
relation,  
 
 ' '

'

ˆ ˆ( ) ( )
M

m m m m
m V

π α π
∈

= ∑x u . (24) 

 
Thus, mπ  is completely determined by the values, { }'ˆ( )m mπ u .  Conversely, given any set 

of values, { }'ˆ( )m mπ u , with 'ˆ( )
M

m m
m V

fπ
∈

= ⋅∑ u t  for all m’, we may extend it linearly in the 

manner of (24) to create a profit functions { }mπ , with m fπ = ⋅∑ t .  x  is linear in the 

{ }mπ , which are linear in ̂x  for fixed f, so the price function determined in this way 

fulfills assumption 2.  We therefore need only show that there exist unique values for 



{ }'ˆ( )m mπ u , with 'ˆ( )
M

m m
m V

fπ
∈

= ⋅∑ u t , such that the resulting price function fulfills 

assumption 3 and 4. 
 
Next, assume a set of values, { }'ˆ( )m mπ u , with 'ˆ( )

M

m m
m V

fπ
∈

= ⋅∑ u t , for every flow f, 

fulfilling assumptions 3 and 4.  Given flow f, and corresponding 'ˆ mu , we consider 

changing the restrictions at a single node 'm m≠ , leaving the total restriction constant.  

This is equivalent to adding a vector from { }ˆ ˆ ˆ: 0, inc( ), 0m e cB y e m y= = ∉ =∑y .  Let 

ˆ m mB∈y  be a vector that maximizes total profit when added to 'ˆ mu , 

 ˆ 'ˆ ˆ ˆarg max ( )m mπ= +yy u y  (25) 

Since ω  is an affine transformation, ˆ ˆ( )ω +x y  is the same flow for any x̂  with ˆ( ) fω =x .  

Total profit is a function of flow, so we can replace 'ˆ mu  with any such ̂x  without 

affecting our maximization problem.  In particular, for any choice of 'm , ˆ my  maximizes 

'ˆ ˆ( )mπ +u y .  Let ' 'ˆ ˆ|
mm B m my= +u u  be the resulting restriction vector for each 'ˆ mu .  Let 

( )m fδ  be the extra total profit from changing the restrictions at m in this manner. 

 
 ' 'ˆ ˆ ˆ ˆ( ) ( | ) ( ) ( ) ( )

mm m B m mfδ π π π π= − = + −u u x y x , any 1ˆ ( )fω−∈x  (26) 

 
Loosely speaking, we can think of this quantity as the loss in profit due to suboptimal 
selection of goods at market m. 
 
Assumption 3 tells us that changing the restrictions at node m while keeping the total 
restriction constant does not affect the sum of the profits at the other market nodes, 
 
 ' 'ˆ ˆ( | ) ( )

mn m B n m
n m n m

π π
≠ ≠

=∑ ∑u u  (27) 

 
Expanding the total profit, we may write, 
 
 ' ' ' ' ' 'ˆ ˆ ˆ ˆ ˆ ˆ( | ) ( ) ( | ) ( ) ( | ) ( )

m m m

M

m B m n m B n m m m B m m
n V

π π π π π π
∈

− = − = −∑u u u u u u  (28) 

Since 'ˆ |
mm Bu  maximizes the left-hand side over restrictions at m that maintain zero total 

restriction, it also maximizes mπ .  By assumption 4, we know 'ˆ( | ) 0
mm m Bπ =u , so we can 

write, 
 
 ' ' 'ˆ ˆ ˆ( ) ( ) ( | )

mm m m m B mπ π π δ= − = −u u u  (29) 

 
As for the profit at m’, we may write, 
 
 ' ' ' ' '

' '

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )m m m m m m m
m m m m

π π π π δ
≠ ≠

= − = +∑ ∑u u u u  (30) 



 
Extending according to (24), we may write the general profit function, 
 

 

' '
'

' '
' '

'

ˆ ˆ( ) ( )

ˆ( )

( )

M

M

m m m m
m V

m m m m m
m m m m

m m m
V

f

π α π

α π δ α δ

α π δ δ

∈

≠ ≠

=

 = + − 
 

 
= + − 

 

∑

∑ ∑

∑

x u

u . (31) 

Roughly speaking, '( )
M

m
V

fπ δ+∑  is the excess profit after removing the profit loss from 

suboptimal allocation at each market.  It is this excess that is allocated proportionally to 
each market according to the total restrictions. 
 
Conversely, given a set of profit functions defined according to (31), for a restriction x̂ , 
with 

inc( )

ˆ 0e
e m

x
∈

=∑  for some node m, we have ( )ˆ ˆ( ) ( )m mπ δ ω= −x x .  Given a vector 

ˆ mB∈y , we also have, ( )ˆ ˆ ˆ ˆ( ) ( )m mπ δ ω+ = − +x y x y .  For this new vector, the total revenue 

at all markets other than m, can be written, 

 

( )

( )
ˆ

ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) max ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆmax ( ) ( ) ( ) ( ) ( )
m

m

m m

B

B m m

π π π δ ω
π π π

π δ ω π π π
∈

∈

+ − + = + + +
= + + + + − +

= + = + = −
z

z

x y x y x y x y

x y x y z x y

x z x x x x

 (32) 

Which is the total revenue at all other markets under the original vector, ̂x , fulfilling 
assumption 3.  Furthermore, we know ˆˆ ˆ ˆ ˆ( ( )) max ( ) ( )

mm Bδ ω π π∈= + −yx x y x .  Letting 

ˆ m mB∈y  be a vector that maximizes this quantity, we then have 

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( )) max ( ) ( ) 0
mm m B m mδ ω π π∈+ = + + − + =yx y x y y x y , since ̂ ˆ m mB+ ∈y y  and ˆ my  already 

maximizes profit.  Then ˆ ˆ ˆ ˆ( ) ( ( )) 0m m mπ δ ω+ = − + =x y x y .  Moreover, mδ  is defined to be 

non-negative, so this is the maximum possible revenue at m, fulfilling assumption 4.  We 
have therefore identified a unique set of values, { }'ˆ( )m mπ u , with 'ˆ( )

M

m m
m V

fπ
∈

= ⋅∑ u t , 

fulfilling assumptions 3 and 4, which completes the proof.  □ 
 
Proof of Lemma 2.  It is easy to see that φ  is a linear transformation between vector 
spaces.  Let /H Ker φ  be its coimage.  φ  is one-to-one over its coimage, so we may 

write 1 : /F H Kerφ φ− →  for its right-inverse.  We may then define 
1: , ( ) ( ( ))DF f fψ ψ φ −→ = rℝ .  For any h H∈ , we have ( )1 ( ) ( )h hφ φ φ φ− =� , so 

assumption (a) implies that prices are the same for quantities 1 ( )hφ φ−
�  and h, 

 1( ) ( ( )) ( )h h hφ φ ψ φ−= =r r � �  (33) 



Given a set of prices, D∈x ℝ , let 1: Hπ →X ℝ , ( ) Th hπ =X x  be the linear 

transformation that takes quantities to total revenue.  For any c Kerφ∈ , assumption (b) 
yields 
 ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )h h c h h hh h c h c h cπ π π π π+= + = + = +r r r r r  (34) 

Which implies that ( ) ( ) 0h cπ =r .  For quantity vector i H∈ , 1 ( ) ii i cφ φ−= +�  for some 

ic Kerφ∈ , so we may write, 

 ( )1 1 1
( ) ( ) ( ) ( ) ( )( ) ( ( ) ) ( ) ( ) ( )h h i h h i hi i c i c iπ π φ φ π φ φ π π φ φ− − −= + = + =r r r r r� � � �  (35) 

We need to describe the space of flows in terms of the flow at each market edge.  To do 
this, let { : }M MEεΕ = → ℝ  be the vector space of arbitrary real numbers assigned to the 

market edges.  We may define linear transformation : MFθ → Ε , ( )( ) ( )f e f eθ = , which 

takes flows into this larger vector space.  It is easy to see that θ  is one-to-one, so we may 
choose a left-inverse, 1 : M Fθ − Ε → , such that 1 ( )f fθ θ− =� .  Substituting into the 

above, 
 1 1

( ) ( )( ) ( )h hi iπ π φ θ θ φ− −=r r � � � �  (36) 

Letting 1 1
( )f fψρ π φ θ− −= � � , this simplifies to, 

 ( )( ) ( )( ) ( )h hi iφπ ρ θ φ=r �  (37) 

Let e Mv ∈ Ε  be the unit vector which assigns 1 to edge e and zero to all other edges.  The 

set { }
Me e Ev ∈  is a basis for MΕ , so we may express ( )hφρ  in this basis as some matrix,  

 1[ ,..., ]
Mh ET t t=  (38) 

For some market-edge prices, { : }
Me e Et F ∈→ ℝ .  Revenue can then be expressed as, 

 [ ] ( ) ( )( ) 1( ) [ ,..., ] ( )( ) ( )( ) ( )( )
M M

M M

h e eE e
e E e E

i t t i e t i e t i eπ θ φ θ φ φ
∈Ε

∈ ∈

= = =∑ ∑r � �  (39) 

Finally, the price of final product d can be computed as the revenue for vector di H∈ , 

which is one for final product d and zero for all other products, 
 ( ) ( )( ) ( ) ( )( ) ( )

M M

h d e d e
e E e d E

i t i e t hπ φ φ
∈ ∈ ∩

= =∑ ∑r , (40) 

which is the required form.  □ 
 
Proof of Lemma 3.  First, we show that the set of total restrictions, ˆ{ }ms , uniquely 

determines the upstream restriction at every component that is not a market edge.  The 
upstream restrictions of the input nodes are uniquely determined (to be zero).  We 
proceed inductively to show that the upstream restriction at a component, c, is uniquely 
determined.  There are three cases to consider:  

1. c is an assembly node.  If the upstream restriction at c’s incoming is uniquely 
determined, the upstream restriction at c is simply their sum, so it is uniquely 
determined. 

2. c is a non-market edge. If the upstream restriction at c’s parent node is uniquely 
determined, the upstream restriction at c is the parent’s upstream restriction 
divided by the number of its outgoing edges, so it is uniquely determined. 



3. c is a market node.  If the upstream restriction is uniquely determined at the parent 
nodes of c’s incoming edges, the upstream restriction at an incoming edge, 

inc( )e c∈  is found by adding a fraction of the upstream restriction at e’s parent to 
the restriction at e.  The upstream restriction at c is the sum of all these upstream 
restrictions, which is the sum of these fractional components (which are uniquely 
determined) and the restrictions at each of c’s incoming edges, which is simply 
ˆcs .  Thus, c’s upstream restriction is uniquely determined. 

 
Next we show that there is a unique upstream restriction vector, ̂w , compatible with total 
market restrictions ̂{ }ms  which results in flow f.  By the first step, we know that ŵ  is 

uniquely determined at each node that is not a market node.  In order for ̂w  to result in 
flow f, we must have ˆ ˆ( ) C mf C N w N s= − = −∑ , which is true by assumption, and for 

each market node, there must be a constant mc  such that if e is an incoming edge of m, 

ˆ( ) m ef e c w= − .  We must also have 
inc( )

ˆ ˆe m
e m

w w
∈

=∑  for ŵ  to be a value upstream 

restriction vector, so 
ˆ( )

inc( )
m

m

f m w
c

m

+=  and 
ˆ( )

ˆ ( )
inc( )

m
e

f m w
w f e

m

+= − .  In this way, we may 

uniquely determine all the ̂{ }cw .  Finally, for each market edge, e, we may compute ̂ex  as 

the difference between the upstream restriction at e’s parent divided by the number of its 
outgoing edges, and the upstream restriction at e.  Thus, we have uniquely determined the 
restriction vector, ̂x , with market totals ˆ{ }ms  which yields flow f.   □ 

 


