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Abstract

In the years since net neutrality first emerged aexus of policy debate, a substantial literature
has emerged to model possible departures from wdajustry practices (see Cheng, et al. 2011,
Choi and Kim 2010, Economides and Tag 2009, Hemaald Katz 2007, Musacchio, et al.
2009). While theoretical approaches vary, eachysaiditimately rooted in the classic building
blocks of Bertrand and Cournot competition. Thismomon foundation has yielded rapid gains to
our understanding, but it is also related to adtif@ree broad challenges. First, as competition
games are layered to depict various network examrractability is strained. Second, studies
lose generality as extra assumptions are addeaptore the market power of network providers.
Finally, the term neutrality obscures a substantaiety of alternatives to today’s industry. Most
existing models can only compare two distinct rezgnmaking it hard to develop a holistic
understanding of the larger neutrality space.

Believing that these limitations are rooted inWleey foundation of Bertrand and Cournot
competition, we consider a novel, and radical, tjaescan these building blocks be adapted to
better target the needs of network research? Quoaph generalizes Cournot competition in a
way that is fully consistent with existing theobyt provides a natural extension from a single
market to more complex network environments. Twesent various neutrality regimes, we
begin by formalizing the concept of a supply chainis paradigm is both simple, abstracting the
interaction of network players, and flexible, captg key differences between regimes. Our main
result extends Cournot competition to this settallpwing us to compute prices at each stage of
production. Moreover, our method is highly tratgéalransparently captures market power, and
treats all technologies symmetrically, isolating #ffects of market structure.

Because of the flexibility of our theory, we maypmesent an unprecedented number of neutrality
regimes in a universal model. In preliminary resulte compare three distinct regimes,
identifying a number of effects that have not bperviously highlighted in the literature. If
neutrality is replaced by a regimepHssage fees in which service providers must pay to access
each network provider’s customers — a double maligation effect dramatically increases

prices and lowers welfare. On the other hand, evesider aluopoly-price rulen which two
network providers compete to sell transit to seryiooviders. This regime gives network
providers nearly as much profit as the duopolyepride, or even more in some cases, but
without the dramatic welfare-loss. Our resultsibeg paint a more comprehensive view of
neutrality. In future work, we will study how eadgime affects investment in both

infrastructure and services.



1 Introduction

In the years since net neutrality first emerged asxus of policy debate, a substantial
literature has emerged to model possible deparftoastoday’s industry practices (see
Cheng, et al. 2011, Choi and Kim 2010, EconomiaesTag 2009, Hermalin and Katz
2007, Musacchio, et al. 2009). While theoreticgrapches vary, each study is
ultimately rooted in the classic building blocksB¥rtrand and Cournot competition.
This common foundation has enabled researchengilb dnumber of successful models
in just a few years. Atthe same time, these cdithpe games can be related to at least
three broad challenges that pervade the neutfadity

First, network users interact with network provileservice and content providers
alike. As Bertrand and Cournot games are layeretkpict these exchanges, tractability
quickly becomes an issue. Complex expressions mak&cult to interpret results,
constraining the range of assumptions that carxpleeed. This both limits the realism
of a model and makes it difficult to establish rsimess.

Second, network providers exercise considerabl&ebh@ower in the industry, elevating
prices well above costs. In practice, capturing gfienomenon with standard
competition games involves tradeoffs. To prevettvork providers from competing
prices away to marginal cost, studies must empktyaeassumptions, such as Hotelling
differentiation (Hermalin and Katz 2007, Economidesl Tag 2009) and captive
consumers (Musacchio et al 2009). Justifying @ifipeassumption about the
relationship between network firms may be difficuRurthermore, there may be no way
to know whether a result arises from market stmactar from the different treatment of
network and service firms. As a result, modelg Igsnerality and flexibility.

Finally, and most importantly, the term neutrabtyscures a substantial variety of
alternatives to today’s regime. Various studiesadgeveral dimensions contained
within the larger debate. These include, for exianhe direction of payments among
network parties, the presence of multiple serviasses, and the degree of discrimination
within each service class. Rather than a binaoyoceh in other words, we face a more
generaheutrality space Most existing models, however, can only compeneedistinct
regimes, and differing assumptions make it hardeteelop a holistic understanding of
the larger space.

These limitations — related tactability, realism andscope- are not general problems

of Bertrand and Cournot competition, but only oplgmg these games, which are well-
tailored to traditional markets, to the network ieomment. At the same time, the near-
universality of these games makes them all-but-ssjide to avoid when writing a model
to study neutrality. In response, this study esgda novel approach. Instead of
rearranging Bertrand and Cournot games into funtihaaels, we will scrutinize this very
foundation, and ask whether traditional competiggames can be adapted to better target
the needs of network research.



The first aim of this study, in other words, isd®sign a general purpose tool for
modeling network environments. While our framewisrkovel, it is also firmly

grounded in the classic Cournot model. Using angbaf decision variables, we are able
to provide a natural extension from a single mat&ehore complex network
environments. While this approach may seem unodkoaour framework is fully
consistent with existing theory, and behaves nliyuraa variety of familiar scenarios.

Before we can use our framework to compare netytna@gimes, each one must be
encoded using a common set of primitives. Su@nguage, or meta-framework, must
be tractable, abstracting the interaction of nekvamtors, as well as expressive, capturing
the key differences between regimes. Our apprbaldnces these aims using the
paradigm of a supply chain. This is a powerful foo studying neutrality, allowing
payments to flow in arbitrary configurations amaregwork actors.

As we will demonstrate, many different regimes bardescribed in terms of a supply
chain, highlighting the goods that are exchangeadxn network participants. The links
in the supply chain express how goods and seraicesold from firm to firm, and their
relationship to each other. Moreover, such a medeapsulates key differences between
regimes in a compact format, allowing a simplepbreal comparison.

On top of our supply chain model, we will develogemeralized theory of Cournot
competition. By employing quantity competitiondhghout a supply chain, our
framework will overcome the three major limitatioofsthe neutrality field that we
described above. Because there are multiple veagistribute profits across a supply
chain for a given demand profile, we will develogoans to identify unique prices at
every point in the chain.

Because of the flexibility of our theory, we mayresent an unprecedented number of
neutrality regimes in a universal model. In secdome will apply our theory to compare
three distinct regimes, demonstrating a numbeffetts that have not been previously
highlighted in the literature:

Zero-Price Rule: We model a scenario in which serprroviders do not exchange money
with network providers — a benchmark rule commardgd to represent neutrality in the
literature. Our formulation is unique in that netk®and services are treated
symmetrically, so results are driven by solely dfedences in market concentration and
cost of entry.

Uniform Passage Fees: We consider a framework inohngervice providers must pay
network providers to access their customers, winétiey are directly connected or
not. We call such payments “passage fees” and eis@double-marginalization effect
that dramatically increases prices and reducesaveetfiompared to the zero-price rule.
Passage fees may be uniform, or we may adaptamefrvork to allow discrimination
among specific service providers or classes ofiserv



Duopoly-Price Rule: As an alternative to passags,feie ask whether access networks
would want to leave their peering agreements witieiobackbone providers and sell
them transit instead. Transit prices would thecdrgstrained by duopoly competition
between access providers. We are surprised tdHatdhis scenario provides network
providers with nearly as much profit as uniformgesge fees (and in some cases more
profit), while maintaining nearly as much welfarethe zero-price rule.

Taken together, these cases provide a newly corapséle view into net neutrality,
delineating alternate regimes and highlightingrtpeds and cons. In future work, we
will study how each regime affects investment ithbafrastructure and services.

2 Neutrality Regimes in the Economic Literature

Within economics, three main lineages bear ondpé tof net neutrality. Not only do
the methods vary between these, so do the acigiat@s that they target for comparison.
At least three industry scenarios can be identifietthe literature, with each pair of these
the subject of a separate economic lineage.

Representing a neutral network, most studies emplat become known as thero-
price rule (Economides & Tag 2009, Musacchio et al. 2009 nk@a& Wiewiorra 2010,
Cheng et al. 2011, Choi & Kim 2010). The commaatdiee underlying these models is
that network providers exchange payments solelly enid-users. Service providers pay
nothing (hence, a zero-price) to connect to thevadt and communicate with their
customers.

The zero-price rule is a tremendously popular, ¢iomperfect, depiction of today’s
industry. To be more precise, a service providestrenter a contract with some ISP in
order to access the internet. In this contextnttevork provider is said to sethnsit to
the service provider. This good includes the righdend data to any destination on the
internet, so a service provider need only purclrasesit from a single ISP. Although
service providers pay for transit, competition agiproviders has long driven down
prices (Musacchio et al. 2009). In fact, transitgs fell an average of 61% each year
between 1998 and 2010 (Norton 2010). The zeraeptite can be viewed as an
extrapolation of this trend.

One strand of papers that uses the zero-priceasudebaseline arises from the classic
economic model of two-sided markets. In this frauokk, a network provider faces
demand from consumers on one side, and demandsiorice providers on the other.
Under the zero-price rule, the network provider ocaly charge a price from consumers.
Under the non-neutral regime, the network proviar charge a separate fee against
service providers.

As mentioned above, service providers already g@ywark providers today, in the form
of transit fees. A key feature of the two-sided’ke&studies, however, is that service
providers must pay every network provider sepaydtetommunicate with their
customers (Economides & Tag 2009, Musacchio &049). Hence, unlike transit,
which is the right to send data anywhere on therit, network providers are selling



just the right to reach their own customers. kheoito distinguish this right from transit,
throughout this study, we will refer to it passage Studies in the two-sided market
lineage typically restrict network providers to osing a single price for passage. We
will therefore refer to this scenario asi@form passage fegegime.

Economides and Tag present a two-sided market ntlodiehllows a duopoly of network
providers (2009). They argue that uniform pasdage are welfare-reducing compared
to the zero-price rule, though consumers face Igwiees and are better off. Musacchio,
et al. present a model in whithnetwork providers can charge a uniform passage fee
(2009). They find that the welfare effects of tregime are ambiguous compared to the
zero-price rule. While the authors model more thia@ network provider, each one is
assumed to enjoy a monopoly over their customeg, lsmsthe model is not targeted to
consider what effect passage fees have on oligagotiompetition.

Moving in another direction, a separate lineagstodlies similarly begins with a zero-
price regime, but instead of introducing a singiegage fee, imagines dividing the
network into a base tier and a higher priority t€service. The relative qualities of each
tier are then modeled using queueing theory. Tlfyicthe base tier remains free, but
service providers must pay a passage fee in oodearismit through the higher tier. We
will label this scenarionultiple service classes

In this vein, Kramer and Wiewiorra consider a mawigh network provider that can sell
prioritized access to a continuum of content prexsd2010). They find the allowing
such discrimination increases short-term welfasayell as incentives to invest in
network capacity and content innovation.

Cheng et al. consider a scenario with two contentigers. Under multiple service
classes, the network provider is allowed to sediriiy access to one or both content
providers, prioritizing their packets (2011). THewd that allowing such charges either
increases welfare and consumer surplus, or letre®s tinchanged.

Choi and Kim similarly consider two content provisi¢hat use a monopolist network
provider (2010). Under multiple service classbs,rietwork provider can sell a priority
right to one content provider, and the authors atpat this increases consumer surplus.
The effects on short-run welfare are ambiguousentives to invest in network capacity
can be lower in the multiple service classes reghmeeause more capacity reduces the
quality difference between service classes.

Completing the circle, a third strand of the litera can be said to compare the uniform
passage fee and multiple service classes regirlesnalin and Katz model a network
provider in a framework of product-line restrictso(2007). The authors consider
whether a planner would want to restrict the nekwgovider to selling a single product,
effectively creating a uniform passage fee scenarirey find that the welfare effects of
such product restrictions are ambiguous, but sudbassuch restrictions will tend to be
welfare-reducing in practice. Unlike the previaiisdies mentioned, they do not model
the zero-price rule.



Figure 1depicts the relationship of the three main linsagghin the neutrality literature,
and the three regimes they investigate.

Zero-Price
Rule
Two-sided markets Priority access
Economides & Tag 2009 Kramer & Wiewiorra 2010
Musacchio et al. 2009 Cheng et al. 2011

Choi & Kim 2010

Uniform Multiple
Passage Fees ﬁ Service Classes
Product-line restrictions
Hermalin & Katz 2007

Figure 1: Major Net Neutrality Lineages

3 A Cournot Theory of Supply Chain Behavior

The previous section described three neutralitinmeg found in the economic literature.
As we have seen, researchers have been successafiting models to compare pairs of
these, but the disparate assumptions they emplé&g mdifficult to compare results
across lineages, or to gain a broader understaditige neutrality space. In contrast to
these studies, we will construct our own modelimgridation, extending Cournot
competition to a general supply-chain setting. sMork bears some resemblance to
Salinger’s model of two vertically-arranged marki@888). Unlike his study, which is
limited to a fixed arrangement of two exchanges,oadel allows an arbitrary
arrangement of exchanges within a supply chainreldder Salinger’s technique requires
firms in the upstream market to select their actifirst, while our framework allows any
timing of player decisions.

Our work also builds upon a previous model by Lasgko and Chuang, in which
Cournot competition is generalized to allow bothawek providers and service providers
to select quantities to sell to a user market (20The current study further generalizes
Cournot competition to the more general setting stipply chain.

As we will detail below, our model of a supply amaiorresponds closely to the

traditional notion for manufactured products — goade sold from firm to firm and
assembled with other goods before being sold tswoers. As we apply this framework
to network neutrality, there are two features thaly cause some concern, and require us
to update our intuition. First, many goods thatwieh to model in the network
environment are intangible. To capture the coteractions relevant to neutrality, we

will need to include services and contractual dilmns, such as transit, as goods in the
chain.



Second, network goods are typically not assemiledghysical sense. For example, a
service provider needs to buy transit before it ®alhservice to an end-user, but we do
not normally think of transit as a part of the seevroduct. To resolve this issue, we
will take a broad view of assembly to include amstance in which an input is required
for a good to continue along the supply chain. sTlassembly denotes any requirement
for a specific input, however it is used.

The supply chain paradigm compels us to focus ergtiods exchanged by network
players, and their relationship to each other.nKimig in terms of goods, instead of, say,
contracts and fees, may take some getting use@iteen a new type of fee, for example,
we must ask what it is that a network player isipgyor, and encode that as a good
within the supply chain. That good must then tseatmled with other goods to signify
where the fee is required. As we will see, howgtres approach is flexible enough to
capture a great variety of neutrality regimes. &tmer, we will be able to express the
differences between different types of fees ineaiglgraphical format.

Once we formalize our notion of a supply chainhea hext subsection, we will be ready
to extend Cournot competition to run over this fdatmon. Our use of Cournot
competition provides a number of advantages ovistiag techniques. First, it is
mathematically elegant. Expressions remain tréeta&vyen as the supply chain grows to
capture complex market scenarios. We may also gdi®me timings, or add extra
assumptions, for greater expressive power.

Second, Cournot competition captures market powarsimple and transparent way. To
model a network duopoly, models based on price etitngn must employ extra
assumptions so that network providers do not coengety prices to marginal cost.
Hermalin and Katz (2007), and Economides and T@g4pdifferentiate network
providers on Hoteling’s line. Musacchio et al (2)@ssume that consumers are held
captive to a specific network provider. Cournotnpetition similarly ensures that
network providers make a profit, but without specassumptions about how the
technologies are related, or how users selectveonlet By abstracting away from such
details, the model remains more general.

Finally, our framework uniquely allows networks as®tvices to be treated
symmetrically; it is entirely technology-agnostithis means that the distribution of
profits is driven entirely by market structure, aaghever an artifact of treating networks
and services differently. Put another way, oumieavork allows us to isolate the effects
of the number of each type of firm or costs of gntreating a valuable baseline for
analysis.

We will begin our treatment in the next subsecbgrdefining a supply chain in terms of
simple graph primitives. Section 3.2 discussesr@aticompetition in the context of a
single market. This will give us the chance t@adtice notation and build the intuition
we need for the general model. In section 3.3wildurn our attention to full supply
chains, and sketch our most powerful results. I§ina section 3.4, we will use our



main theorem to formally define a Cournot gamell téghnical details may be found in
the appendix.

3.1 The Network as a Supply Chain

Mathematically, we define supply chain G, as a directed acyclic graph with nodés
and edgeg, containing

1. A set of source node¥, [V, which we calinputsor input goods

2. A set of non-source nodes, consisting of a seseémbly node¥/, IV and a
set ofmarket nodesv,, 0V, which we depict with a triangle symbol. We will
call the incoming edges of each market noweket edgesE,, [ E.

3. A unique sink, which may be either an assembly revdemarket node, and
which we call theconsumer marketC OV .

Abusing notation slightly, we will also use the iadte denoting a graph to represent the
set of all elements of the graph, o=V [0 E. For each node, we will write

inc(n) 0 E for its incoming edges. Given a supply ch&@nwe define a final produat,

as an induced subgraph®f with the following properties:

1. dincludes the consumer market, and no other sinks.
2. If an assembly node, is ind, inc(a) d0 d.

3. If a market nodem, is ind, exactly one edge imc(m) is ind.

Let D be the set of all final products, aktl={h: D - & be the vector space of real
final product quantities. Lef, be the unit vector that assigns a quantity of finial
productd.

We will also want to describe the flow of goodsrgjdahe supply chain, from input to
final product. To do this, we may defingaantity flow, fas an assignment of a quantity
to every node and edge®) f :G - R, such that,

1. The quantity of each node except the consumer madkels the total quantity of
all outgoing edges.

2. The quantity of a market node equals the total tjtyaof all incoming edges.

3. The quantity of an assembly node equals the gyaoftieach individual incoming
edge.

For mathematical convenience, we will allow theriges in a quantity flow to take on
negative values. L&t be the set of all quantity flows. It is easy heck thaf is a
vector space where addition and scalar multiplicasire over each component. The
following lemma is proved in the appendix.

Lemma 1 F has dimensiofE, | -|V,,| +1.



For every set of final product quantities, thera isatural quantity flow that can be said
to produce those quantities. Specifically, givereetor of final product quantities,
h H , we may defingg(h) as the quantity flow that assigns to each compireen G,

the total quantity of final products that includi@t component:

@h)(g)= >, hd),forallgdG (1)

dOoD|gdD

In particular, we will letu, = ¢(h,) be the flow that produces a unit quantity of final
productd. It is important to note that in generai,is not injective. This means that given

a set of final product quantities, we can derivedhique quantity flow that produces
those quantities, but a single quantity flow cdogdassociated with more than one vector
of final product quantities.

3.2 A single Cournot market

Before presenting our general Cournot frameworkyliebegin in this subsection with
just a single market node. This scenario cormedpado the classic Cournot model, and
we will take the opportunity to introduce our owotation. This will give us the intuition
we need to extend the game over an entire suppiyn.ch

In the classic Cournot setupfirms produce imperfect substitute products armabske
quantities. Prices are determined by an inverseadd functiont ={t} , where

t.(x,...,%,) is the price of firm’s product, andx is the quantity firm produces.. We

will assume that there is a maximum total quanhitysuch that the total profit of all
firms may be non-negative.

So far, we have given a more-or-less standard iggiscr of Cournot competition,
focusing on how much of the market the firms supggr our purposes, however, we
will find it profitable to focus instead on how ntuof the market the firms decide to
leave unsupplied. Define the quantity restricfionfirm i, X , to be how many fewer
customers the firm supplies than it would havdli€astomers were divided equally:

% = N/ n-x. This form is chosen so that the total quangstriction is the number of
unsupplied consumers:

DX=N=-> x. )

Notice that quantity restrictions may be negatsethere is a one-to-one correspondence
between quantities and quantity restrictions. Tmesans that our game is fully equivalent
to regular Cournot competition in a mathematicakse The change, in other words, is
merely one of emphasis, highlighting the total nemif consumers as a reference point.
While our change of decision variables has no effaa single market, it does provide

an intuitive way to extend Cournot competition oaesupply chain.



We will represent this basic Cournot market graplhyowith the triangle symbol, below.
In this graph, which we will explain in the nextsen, the lines represent each goG,

entering the market, with the corresponding quanéstriction labeled alongside.

If our change of decision variables strikes theleeas somewhat artificial, rest assured
that it may be considered temporary. Quantityrig&ins will give us a natural way to
join Cournot games together to describe compleplgughains. In the end, though, we
will see that firm’s strategy can be seen as atisoldo a regular Cournot game, and our
framework may be rephrased in terms of quantities.

3.3 General Model

Building on the previous subsection, we are nowlyda extend Cournot competition to
an entire supply chain. Our procedure involvesialver of steps. Very briefly, we must
first specify how a quantity restriction reduces tuantity flow in different parts of a
supply chain. These reductions are summed tog&ihat quantity restrictions to find
the resulting flow. Because restrictions are netato a maximum amount, there is never
a mismatch between decisions in different parthefchain. When firms in one market
node reduce their output, for example, firms ireotbarts of the supply chain
automatically reduce their outputs to compensate.

After computing quantities, we are ready to compuitees in each market node. This is
straightforward for a single market, since thera imique set of prices that fulfills
demand. Things become more complicated in a sugbiain, however, since prices can
be increased in one node and decreased in othesmathout changing the prices of the
final products. We therefore take an axiomaticrapph, adding further assumptions to
constrain the set of possible prices. Our cetiti@rem uses four assumptions to
identify a unique set of prices at each stage ofipection. This will allow us to use our
framework in much the same way as traditional Coucompetition to construct games.

Consumers are represented by an inverse demanbfunc={r,} ;.o r,: H - R,
wherer, (h) represents the price of final produacas a function of final product
guantitiesh.

Because firms in our model will make decisionshatgranularity of quantity flows, and
cannot in general control the quantity of indivitfiaal products, we will assume that
demand only depends on the quantity flow. Speddificgiven two vectors of final



product quantitiesh, h, 0 H, produced by the same quantity flogh) = ¢(h,) , we
assume

a) The resulting price vectors are equdlh) =r (h,).

b) The resulting total revenues are equalh (d)r,(h) = > h(d) (h).

dob dob
According to the next lemma, which is proved in #@ppendix, these assumptions let us
describe demand in terms of prices exerted at emcket edge:

Lemma 2: The inverse demand can be expressed in termprafeaexerted at each
market edge, where the price of each final produttte total of the prices charged at its

edges: There exists={t} ., t; F - R, such thatr, (h) = Z@dw t,(@(h)) for all
dOD,hOH.

Note that in general, the market-edge pri¢é}, . , are not unique (in the proof of the

lemma, the choice of™ is not unique). For example, it may be possiblimtrease the
prices in one market while decreasing the pricemiother market by the same amount,
without affecting the price of any final productdevertheless, we will usually specify
demand in terms of market-edge prices, bearingim tthat multiple specifications may
be equivalent.

Analogously to the single stage game, we will hiawves choose quantity restrictions,
and then use these to compute the quantity floaveviery market edges] E, , we

associate a quantity restrictiok,, and writex for the vector of all such restrictions. We

would like each restriction to decrease the quafibtv at its specific edge, but in order
to do this, it may be necessary to reduce the dtmmg other edges to maintain a valid
guantity flow. In general, there are many ways gheestriction at one edge can affect
other parts of a supply chain, [does any linear m#pmatically work with theorem 17?]
and our chief criterion is that this process baitiie. Our method will be based on a
simple rule: in essence, a quantity restriction kgl split evenly each time the supply
chain branches.

To achieve this, we first define t@stream restrictionw,, for each supply chain
componentc G, recursively as follows:

1. For any nodeyV, wW(V)is the total of the upstream restrictions of atiaming
edges.

2. For any edgeel] E, W(c) is the upstream restriction of its parent nodeideid
by the number of outgoing edges that parent hakphlus the edge’s own quantity
restriction, X, , if eis a market edge.

We assume that it is the upstream restrictionsdbegrmine the relative flow of each
input to a market node. First, we assume thaetlses maximum magnitude of quantity
flow, N, such that the total profit of all final produgssnon-negative,



N = rpDan(| f |ZdDD x,t, (d)= O). Next, we define the quantity flow induced Ry

f OF , as the unique quantity flow such that,

1. f(C)=N-W
2. For any two incoming edges of the same market reodedb,
f(a)- f(b)=W — W. Equivalently, for each market node[1},, , there exists

a constant,, such that ieis an incoming edge oh, f(e) =g, - W,.

Let w:R™ _ F be the map that takes each restriction vectdrg¢ajtiantity flow it
induces. It is easy to see that {iie} are linear inx, andf is affine in the{w} , hence
w is an affine transformation. In general, we wék thatw is surjective but not one-to-

one. The following lemma will characterize the gktestrictions that result in the same
flow.

Lemma 3: Given any flow, f OF , and a set of total restrictions for each market,
§, MmOV, with >'§ = N- f(O), there exists a unique restriction vector,such that

D> % =§, forall m'z mandaw(X) = f . These vectors make up the inverse image,
ellinc(m)

w(f).

A proof is given in the appendix. To representititkiced quality flow at a market edge,
e, we will use the corresponding quantity restrieti@riable without the hats, = f(e),

with x ={x} ¢, - Having computed quantities, we are ready to edmprices at each

market node. Mirroring our representation of dedpame will find it convenient to work
with marginal prices [is that the right term fd? it mean the markup over the price paid
to acquire the good]. For each market edge F, , let the marginal price at that edge be

X,, represented by a bar over the correspondingatstr variable, withX ={X} o .

The total price of a final produdl, is then the sum of the marginal prices at eadtsof
market edges, >’ x,.

eldn B,

In classic Cournot competition, there is a unigeteo$ prices such that demand is
fulfilled and consumers are indifferent betweencpassing all products. Unfortunately,
while the above lemma assures us that there isat searket-edge prices that fulfill
demand, it will not, in general be unique. It nieeypossible, for example, to subtract
some amount of money from the prices at one mawb@¢, and add it to the prices at
another market node while preserving all final prctdprices.

Because of this, we will need more assumptiondéatify the most natural set of
market-edge prices, as a function of quantity iggtns. Our approach will use the
following four:



1: Demand is fulfilled X [, =t U, forall dOD.

2: When the domain is restricted to a fixed qugritdw, f, prices are linear in
guantity restrictionsx.

3: If the total restriction at any market nodees changing the restrictions at that
node while maintaining the total quantity restoatidoes not affect the sum of the
revenues at all other market nodes.

4: If the total restriction at any market nodeeas and the restrictions at all other
nodes are fixed, the maximum total profit at thade is zero. That is, for any market
nodemO,, , with edgesE, L E,,, given restrictions at all other market nodes,

{33 €5,/ E, max;\%:;g,mwg“zxe?e: 0.
Theorem 1: Given a set of quantity restrictions, with non-zero totalZf(e # 0, such
that the total flow at each market node is non-zéfrere exists a unique price function,

X:E, - E,, such that assumptions 1-4 are fulfilled.

The complete proof is given in the appendix.

3.4 Game Definition

Theorem 1 allows us to use our Cournot frameworkuch the same way as we would
use traditional Cournot competition. To compleate tbeatment and define a game, we
must specify what player owns a good at each panecsupply chain. We will say that
two graph edges or assembly nodese, 1 G\ '\, areowner-continuou# there is a

path that includes both that does not include aasket nodes in between the elements.
This is an equivalence relation, and the resukiggivalence classes denote parts of the
supply chain between market nodes, in which a goost be owned by a single player.

Formally, we may define a Cournot supply chain gashan ordered 4-tupléG,t,Y,a),
consisting of a supply chain, G, a compatible iseetemand functiof,( f)} ¢ , a set
of playersY, and a ownership mag,: G\V,, - YO{ G, such that if graph elements
c,,C, G\, are owner-continuousy(c) =a(c,), anda(c) = C if and only if the
elementc is owner-continuous with the consumer node. Fdaper, yIY, selects a
quantity restriction for each market edgél E, with a(e) = y.! These quantity

restrictions determine a unique quantity fldwand a unique set of market edge prices,
X, according to Theorem 1. Finally, the payoff tayer yOY is the sum of the

revenues at each market edge she owni fex.
eBy.a(e=y

4 Network Neutrality Analysis

In the previous section, we presented a formal lsugpain description, and developed a
natural way to extend Cournot competition over atire supply chain. With these tools

! Throughout this study, we will assume that playsiect their quantity restriction simultaneousThhe
timing may be altered, for example, to denote aggive players.



in hand, we now turn our attention to the studpetf neutrality. We will examine a
series of neutrality regimes, inspired by the &itare, depicting each as a supply chain.
This will require us to identify the goods exchatdpetween network actors, and where
each is required on the path to a complete finadipet. We will then apply our Cournot
theory to compute equilibria, allowing us to comgprices, welfare, and other metrics.

In order to tie all of our supply chains togetresach will share a common set of players,
consisting of 2 network providers, NBnd NB, andm service providers, SP..,SR,.

Each network provider, N#s the owner of a network input, Niet Similarly, each
service provider, Sis the owner of a service input, $erOther inputs may be modeled
to represent contractual obligations that occudifferent regimes. We will use the
variable x to represent the quantity of Neand y; to represent the quantity of er

Because a final product will always be built fromeaetwork and one service, we will
always havez X = Z y, . Although our theory admits a highly general demand

function, for this analysis we will use a simpledar demandt; =1—Z)§ = l—z Y, -

4.1 Zero-price rule

As we described in section 2, most studies emplogra-price rule as a benchmark
representing a neutral network. The key featuramon to these models is that service
providers do not exchange payment with network idierg in order to access customers.
Thus, from a supply chain perspective, we need comgider two goods: a network good
that is sold from a network provider to the endruaad a service good that is sold from

a service provider to the end-user. We depictetige®ds as being assembled together by
the end-user, which ensures that equal amountstaionk and service are produced.

Our supply chain for the zero-price rule is pictubzlow. In this diagram, inputs are
presented at the left, each labeled in a rectarigkrket nodes are depicted as triangles,
with a quantity restriction labeled on each incogngtilge. The consumer node, in this
case, and assembly node, is pictured on the fadieled by a C. As we described in our
theory sections, each firm must choose a quardgtyiction instead of a quantity. Let
each service providgrestrict its input byy, , and let each network providerestrict its

network input byx .

Serv 1

Servm

Net 1

Net 2




The total quantity of all final products 1s- ZX - z Yy, , and inverse demand may be

written, t;, (X,9) =1->'%. = > §. for alli,j. Since the profits in each market are
proportional to the total restriction there, we ncaynpute the price for networko be
X =Y %, and the price for serviggo bey, =>" ¥ . These may also be written in
terms of quantities as,

X=1=2% =2, % Y=y =2 %
This relation suggests that the two sides of theketanteract by exerting a simple price
on each other, exactly what we would expect fondiin a vertical arrangement. In fact,
in the case that there is one network provideraredservice provider, the game is
equivalent to one in which both firms select pricasd the familiar double-

marginalization result emerges. Thus, our framé&bahaves in a very natural way in
this scenario.

1-S'y
NP, makes profit, 7z, = x% = [% - X]Z % with first order condition,

k
1_2 9,’ ~
2

1-3" %
—KJ—Z& =0. SRmakes profitzz, =y y, =( %X —3’,}23& with
K k

1-) X
first order condition( ZX -9 J —z % =0. These can be solved for the
m k

equilibrium,

o 2 o _ . m
Y m(3m+2)’)§ (6m+ 4)

3)

m 2
L= , = 4
% 3m+2 Y 3m+ 2 @)

m 2
X = , V. = 5
X 3m+2 7' 3m+2 ®)

m Y 2 )

e _(3m+ 2] sy _( 3m+ 2j ©)

Let p,, be the price of all final products for the endruseder the zero-price rule. This
is given by,

p :7(+_:m+2
» =8N Tgme2

(7)

Welfare under this regimey,,, may be written,



_ 4m(m+1)

w. =01-p?)/2
), =(@=p7) 3m+ 27

(8)

For largem, this equilibrium approaches the familiar Coureqtilibrium with 2 firms,

x=1/3,y,=0 (9)
x=1/3,y,=0 (10)
Ty =119, 715, = 0 (11)

4.2 Uniform Passage Fees

In this section, we consider a widely-discusseahage, in which each network provider
begins directly charging service providers a feeteeallowing them to reach its
customers. From a supply chain perspective, ealeltteates a right of access to its own
customers, which we call passage in order to djstsh it from transit. Unlike transit, a
service provider must purchase passage from ewwoink provider with customers it
transmits to.

When incorporating passage into our Cournot framkywakey challenge is ensuring
that each service provider purchases the right abafypassage from each network
provider, corresponding to the number of end-usensiected to that provider. Our
model provides a convenient way to accomplish t&h service provider can choose
the right amount of each passage good imtrnal market In effect, we will allow
each service provider to sell passage to itsel§nmmg that no money will be exchanged
between players. The restrictions in this intemaftket will be set to ensure the proper
amount of each passage good, and the total réstrietll be zero, ensuring that this
market does not affect the service provider’s psofi

Our strategy is shown in more detail in the sumblgtin below. As passage goods move
along this supply chain, they are first sold fromedwork provider to a service provider.
They next enter an internal market, in which eamfvise providei selects between
passage goods, adding quantity restrictiopsv,} , which we will compute to ensure the

proper amount of each good, with + v, =0. We will assume that the price of a final

product does not depend on which passage inputlitdes. This will ensure that the
total price of each passage input is the same vilieigombined with a service input, and
each service provider therefore charges a singte pt the end-user market.

If our methodology strikes the reader as unorthodoe that when we restrict to our
linear demand function, our model is fully equivdleo one in which network providers
select prices for passage and charge these tesgmaviders. It would be possible to
use prices in this way for a general demand functioit our use of internal markets
allows us to maintain a consistent treatment ofketaras Cournot.



Serv 1 9,
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Servm
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Claim 1: The equilibrium solution for the Uniform Passdges supply chain is as
follows. Prices are given by,

- m - 3m - 1
X=- , W= , y=—— (12)
2(3m+1) 2(3n+ 1) m(3mt+ 1
With quantities,
m 1 1 m
=y = — Yy = W= 13
T o@m+) Y Tamer T 2am 1 ' 2@m 1 (13)
And prices,
m 1 3m
X =— , Yy = , W=—— v =0 14
% 3m+1 7 3m+1 W 3m+ 1 ¥ (14)

A proof is given in the appendix. The price fodarsers in the uniform passage fees
regime, p, , is given by,

(15)



which is considerably higher than the price untierzero-price rule%. In fact, in

3m

the limit that the service industry is fully comipee, m — o, the price for end-users is

twice as high under uniform passage fees.

3m?

(3m+1)(3m+ 2)’

increases witm, meaning that the extra price from the move awamfneutrality is
greatest when the service market is competitive.

Moreover, the price increase compared with the-peice rule,

It is also interesting to note that the price fetwork service in the end-user market is
actually negative — network actually pay end-userselect their networks. Intuitively, it
is better for a network provider to earn revenuelwgrging service providers, knowing
that this lowers the demand for both networks gadit the same time, the provider pays
end-users hoping to establish as much market sisgpessible.

A similar effect occurs in the familiar credit cardarket. Credit companies set prices for
card-holders to zero, even offering incentives skethe price effectively negative,
preferring to charge positive fees from merchants@ther sources.

Equilibrium profits are given by,

TT. :L 7T :; (16)
“Moo@Bm+1? T Bm+ 1y

Welfare in this regimeg, . , may be written,

_5n? +2m

= 2@+ 17 (17

a‘{pr = (1_ pdpz)/2

This is considerably lower than welfare under tezprice rule. In fact, in the limiting
case of a fully competitive service industry, wedfaés only 5/8 as high.

4.3 Duopoly price rule

To some extent, the neutrality debate concerna¢hgork providers’ desire to extract
money from service providers. Passage fees aidedyadiscussed method for network
providers to accomplish this, but they are notahly method. In this section, we
consider what would happen if the network providersrote their peering agreements
with other ISPs, and began to charge them moneytierconnection. This would result
in duopoly competition, in which each service pd®ariwould need to buy transit from
one of the two network providers. This scenaripicsured in the supply chain below.



Serv 1

Servm

Trans 1

Trans 2

Net 1

Net 2

Claim 2: The equilibrium for the Duopoly-price rule suplyain is as follows:
Equilibrium quantities are,

__3m y = 3 __3m (18)
X oEm+a) Y T emra ' 26mt 3
With equilibrium prices,
= m - 3 _ m
= s / = y — 19
5 Sm+ 3 ¥ 5m+ 3 i Sm+ 2 (19)

A proof is given in the appendix. Let,, be the price of all final products for the end
user under the duopoly-price rule. This is givgn b

2m+ 3
5m+ 3

P =X T Y+ W= (20)

<

which is strictly larger than the end-user priceemthe zero-price rule, but smaller than
the end-user price under uniform passage feedefse, the extra price compared to the

2m+3 m+2 _ m . .
- = , increases witim. In other words,
5m+3 3m+2 (5m+ 3)(3m+ 2|

the increase in price from moving to the less raugime is most pronounced when the
service industry is competitive.

zero-price rule;

Equilibrium profits are,



3n7? 9

JT. = Nlefp=F————— 21
N Bm+32 T (5m+ 37 @1)
Welfare in this regimeg),,, may be written,
3m(7m+ 6)
w, =01-p*)/2="—r— 22
b =@ 2= 5 L (22)

The loss in welfare compared to the zero-price, ralg - w,,, similarly increases with.

This means that the welfare loss from non-neuyraimost pronounced when the
service industry is competitive.

4.4 Comparison of Neutrality Regimes

In the first graph below, we compare the total asdr price across all three regimes we
analyze. Much of the neutrality debate centersr@dhe possibility that network
providers introduce passage fees. As the graplhsshbe end-user price under this
regime is considerably higher than the two alteveatwe tested. This is due to the
double-marginalization effect we identified prevsbu Prices are also elevated under the
duopoly-price rule, but by a far smaller amount.tHis scenario, network providers
compete in a partially vertical arrangement. Retstig quantity in the network market
also reduces a competitor’s output in the transitket, and vice-versa, partially aligning
incentives.

Figure 2: End-user prices under three neutrality rggimes
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In the next figure, we plot network provider prefitnder our three neutrality regimes.
As one might expect from the elevated prices, ntypooviders earn higher profits
under both uniform passage fees and the duopadg puie. It is interesting to note that
the scenario preferred by the network providerseddp on the number of service
providers. When the number of service providessnall, they are able to extract higher
rents, squeezing the potential profit margins efriktwork providers. Under uniform



passage fees, however, double-marginalization byark providers prevents service
providers from charging high prices, somewhat cerauting this effect. For this reason,
uniform passage fees give network providers a@dati advantage when the service
market is concentrated.

Under a competitive service market, on the othedhaervice prices drop, and the
duopoly price rule gives network providers an adage. Their partially vertical
arrangement aligns incentives, and improves tbeigHrun profits.

Figure 3: Network provider profits under three neutrality regimes
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The next graph depicts service provider profiteun regimes. As expected, profits fall
as the service industry becomes more competitiethermore, there is a clear and
dramatic difference in service profits betweenttiree regimes, with the zero-price rule
providing the most profits, and uniform passage the least.

Figure 4: Service provider profits under three neutality regimes

0.35

A
03
0.25 \

0.2 - —&— Zero-Price Rule
—— Duopoly-Price Rule
Direct SP Payments

0.15 -

0.1

0.05 -

O T T
0 5 10 15

Number of Service Providers




Finally, we may compare welfare between our regiméke graph below. The zero-
price rule features the highest welfare. By congoar, uniform passage fees result in a
dramatic drop in welfare, owing to the double-maadjzation effect. The duopoly price
rule, however, appears as an attractive alterngtnaelucing nearly as much welfare as
the zero-price rule.

Figure 5: Total welfare under three neutrality regimes
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5 Discussion

At first glance, our supply chain framework may eg@pto be a complex way to arrive at
net neutrality results. Certainly, a lot of ma@rygoes into developing our Cournot
theory. The rewards, however, are considerable.aW able to treat a great variety of
regimes under a uniform framework, with tractablpressions, potential for further
expressive assumptions, and a natural treatmenad{et power. Moreover, our
framework is technology-agnostic, guaranteeing tbslts are driven exclusively by
market structure, not specific assumptions abalnelogies. Through these efforts, we
are able to start building a more comprehensivei@of the larger neutrality space.

Moreover, our study’s potential for broader impadremendous. Supply chains exist in
countless other industries, and our framework glesia general-purpose tool that can be
put to use in many scientific analyses. By usimgaand function calibrated with
empirical measurements, managers may apply oueframnk to predict behavior under
realistic market conditions. Regulators too, mag potential in our theory,
understanding the effects of mergers in supplyfcivadustries.

Our study of net neutrality has provided fertilegnd in which to test our Cournot
theory. Much of the neutrality debate has beevedrby a seemingly straightforward
guestion: what would the effects be of abandonetgieutrality in the internet. By
comparing a larger number of regimes in a unifragnework, our study suggests that the
answer depends on exactly what type of regime ceplaeutrality.



As we have seen, uniform passage fees create éedmaloginalization effect that drive
up prices and considerably reduce welfare. Astrae time, our analysis points towards
a duopoly-price rule as an attractive alternati8eich a regime produces nearly as much
welfare as the zero-price rule, which network pdeviextract nearly as much, or
sometimes even more, profit as uniform passagediéss.

As we continue to pursue our research, we will exktill more examples of neutrality
regimes, and also add new metric to use in thenpasison. In particular, we will soon
begin to study incentives for firms to invest imgee innovations and network upgrades
under each regime. Through these efforts, we aibuild a fuller picture of the larger
neutrality space.
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7 Appendix

Proof of Lemma 1.Suppose that we are given values for a lavC and at all

incoming edges except one for each market node mdethen induct backwards to
compute the flow at any componeat, If ¢ is a node, and we know the flow at its
outgoing edges, the flow atmust be the sum of these.clis a non-market edge, and we
know the flow at its child node, the flow @atnust be the same value.clis a market-
edge, and we know the flow at its child node, weeather given the flow atby
assumption, or we may uniquely compute it sincdltwe atc’s child node must be the



sum of the flows at its incoming edges. Finallg have specifiedE,, |-|V,,|+1 values

by assumption, and any choice of these valuess/eldifferent flow, so this must be the
dimension of. O

Proof of Theorem 1.LetF / f ={f'OF, f' O f} be the orthogonal complementfoh
F. Choose a basi¢g} for F/ f . For each market nodeyO0'V, , let f,,OE,, be the

vector that’'s equal tbatm’'s incoming edges, and zero everywhere else. Awddet
0:F - E,, 6(f)e = (8, be the orthogonal projection taking flows irgQ .

Lemma 4:{& g)} X f} is a basis folE, .

Proof. We first show thaf& g)} (X f} are linearly independent. THg} are
linearly independent, and is a one-to-one linear transformation so {fleg)} are
linearly independent. Thf } are also linearly independent, so it is sufficient
show that no linear combination of thé } yields a non-zero linear combination of
the{& g)} , or equivalently,&(f ") for somef 'OF / f. Assume for contradiction
that there is such af"OF / f , with 6(f ") = Z a,, f,, for some constant$a, } .

oV,
Without loss of generality, we may scéleo thatf '(C) = f(C). Assume for
induction thatf '(c) = f(c) for some graph component If c is an edge, andlis its

parent node, to be valid, the flowraimust be the flow at times the number ofs
outgoing links, so we havé'(n) = f(n). If cis an assembly node, the flow at any

incoming edgeellinc(c) must be the flow at, so we havef ‘(e) = f(€. Finally, if
cis a market node, we know théat(e) =6(f)(&=>_ g, f,(§= a f( & for all
eldinc(c). Butfor f' to be a valid flow, we must have

3 f(=a Y f(8= f(9= (9. Sincefisavalidfow, 3 f.(e)= (9

ellinc(c élinc( g eflinc(c

and( t)hereforerat =1(.) Hence,f '(e) = f(@ for all edinc(c). We ma;/)conclude that
f'=f, contradictingf '‘OF / f .

Finally, sinceF has dimensiofE, | -|V,,|+1, F/ f has dimensiofE, |-|V,,|.

Thus, this is also the number of th& g,)} , while there aré(VM| of the{f} , fora
total of |E,, | linearly independent vectors. This is also theatision ofE,, , so

{&g) O f} isabasisfoE, . o

First, assume that the price functi@nfulfills assumption 1. Since the price of eactafi
product is the same under price vecterandt, and the{u} spanF, the total price of

any flow must be the same as well.

XxOF'=t¥ "' forall f'OF (23)



Since the vector§f g,)} [{ f} form a basis folE,, , X is uniquely identified by its dot

products with these vectors. Furthermotenay be written as a linear function of these
dot products. Since thg lie inF, we havex[#(g,) =x[g =t[Q foralli. XTI is

simply the revenue at market nagewhich we labelrz,. Moreover, we have

Y om, =Y X, =X f, =X . Aslong as this equatsT , equation (23) will hold
for f as well af g} , and therefore all oF . Thus, any set of revenudsr} , with
an =t ¥ identifies a uniqu& fulfilling demand overF . We therefore need only
show that there exists a unique set of market poolts, {77.} , with Zﬂm =t , such
that the resulting price functiox fulfills assumptions 2,3,and 4.

Next, assume a functidiiz} with ZITm =t [T , such that the resulting price function

fulfills assumption 2. Fix a flowf, By Lemma 3, for each market nodg,we can
uniquely choose a restriction vectots,, such that z U, (e) =0 for all m'# m, and

elinc(m’)
> %
a(0,) = f . For a general restriction that induée& Daw™(f), let a,, = =™ __ pe the
SDZE'ZW %
fraction of the total restriction located at marketlem. Sincew™(f) is an affine
space, the affine combinatioE a G, isalsoinw™(f). Furthermore, the total
oV,
restriction at a market noahefor this vector is
> % > %

a, > 0,0="2"—> 0,(9=""2—f(Q= > 7%, whichisthe same as for

ellinc(m) z )’Ze el f(C) ellinc(m)
By
X. By Lemma 2, there is only one vector with thisgerty, sox = Z al. .

MV

Since prices, and therefore profits, are lineahwithis domain, we may write the
relation,

&= Y aum ). (24)

mOVy

Thus, 77, is completely determined by the valu{:gm(ﬁm)} . Conversely, given any set

of values {7, (3 ,,)} , with > 7 (0,,) =t for allm’, we may extend it linearly in the
MmOV,

manner of (24) to create a profit functiofrg} , with ZITm =t[¥ . X islinear in the

{m} , which are linear irx for fixedf, so the price function determined in this way
fulfills assumption 2. We therefore need only shbet there exist unique values for



{m, @)}, with > m (0,)=t, such that the resulting price function fulfills
MM,

assumption 3 and 4.

Next, assume a set of valugsr, ()}, with > 77 (0, )=tF , for every flowf,

oV,
fulfilling assumptions 3 and 4. Given flowand corresponding,,, we consider
changing the restrictions at a single node m', leaving the total restriction constant.
This is equivalent to adding a vector frdsy :{9: ¥, =0, e[ inc(m),z Y= C} . Let
y..0B,, be a vector that maximizes total profit when adided,, ,

Yn=argmax 77, +y (25)
Since w is an affine transformatiorg(X +y) is the same flow for any with w(x) = f .
Total profit is a function of flow, so we can repdali . with any suchx without
affecting our maximization problem. In particuléor any choice ofm', ¥, maximizes
@, +Yy). Letl, |, =0, +y, be the resulting restriction vector for eagf. Let
o, (f) be the extra total profit from changing the resions atmin this manner.

8,(1)=7d,, |y )~ 71U ) = T&+§ )~ 7R), any XD (f) (26)

Loosely speaking, we can think of this quantityhesloss in profit due to suboptimal
selection of goods at market

Assumption 3 tells us that changing the restrictiahnodem while keeping the total
restriction constant does not affect the sum ofptiodits at the other market nodes,

Syl )= m@,) (27)

nzm M m

Expanding the total profit, we may write,

77(0m' |B,n)_”(0m)= Z ”n(amlﬁﬂ)_”n(ljI m)=ﬂ”(l] mlnB)_ﬂ n@ n) (28)

nVy

Sinced,, [ maximizes the left-hand side over restrictionmiéihat maintain zero total
restriction, it also maximizes,,. By assumption 4, we know, (0

write,

«lg ) =0, s0we can

70,(0 ) = 710 ) =710 | g )= =0, (29)
As for the profit am’, we may write,

() =m0,)-Y 70 =m0 )+, (30)

mzm



Extending according to (24), we may write the gahprofit function,

ﬂm()’z) = Z a,m‘ﬂ-m(l’:j m)
mTVy

=am[n(am)+ > %}— > a0, (31)

m'Zm mz m

:O'm|:77(f)+z5m}—5m

Roughly speakings( f) +25m. is the excess profit after removing the profitsié®om

VM
suboptimal allocation at each market. It is thisaess that is allocated proportionally to
each market according to the total restrictions.

Conversely, given a set of profit functions defirmadording to (31), for a restrictian,

with >’ % =0 for some noden, we haverr, (%) = -3, ((X)). Given a vector
eflinc(m)

yOB,,, we also haver, (X +¥) =-3, (w(X+¥)). For this new vector, the total revenue
at all markets other than, can be written,

(X +9) = 71,(X +9) = WX+ ) + 5, (X +Y))

=(X+Y)+maXe, TR+Y+2)-mX+Y) (32)

= max,,, T&+2)=3, (w&)+ &)= 7&)- 11, )
Which is the total revenue at all other marketseuride original vectork, fulfilling
assumption 3. Furthermore, we kn@jy(a(X)) = max,,, 7&+Yy)-7). Letting
y..OB,, be a vector that maximizes this quantity, we thawne
O, (% +,)) =max;, . T&+Y ,+9)- &+ )= 0, sincey +J, OB, andy,, already
maximizes profit. Them(X+y )=-0, (a(X+Yy ))=0. Moreover,d, is defined to be
non-negative, so this is the maximum possible regeatm, fulfilling assumption 4. We
have therefore identified a unique set of valdes,(0,,)} , with > 7 (G,,) =tF

MoV
fulfilling assumptions 3 and 4, which completes pineof. o

Proof of Lemma 2. It is easy to see that is a linear transformation between vector
spaces. LetH / Ker ¢ be its coimage.g is one-to-one over its coimage, SO we may

write ¢* : F — H / Ker ¢ for its right-inverse. We may then define
wiF ~ R g(f)=r(g*(f)). ForanyhOH, we havep(g* o g(h)) = ¢(h), so
assumption (a) implies that prices are the samgufantitiesg™ - g(h) andh,

r(h) =r(@” o) =y og(h) (33)



Given a set of pricess DR |, let 7z, : H — R?, 7z, (h) = X" h be the linear
transformation that takes quantities to total rexenFor anyc [ Ker ¢, assumption (b)
yields
T (M) =T g(ht 9= (ht 9=7,(D+7 (9 (34)

Which implies thatrz ., (c) =0. For quantity vector OH , i = @ o@li)+c, for some
¢ U Ker @, so we may write,

T () =17 (g ogli) +c)) = T (v (w_l ° ﬂ')) €)=y 0 g ogi) (35)
We need to describe the space of flows in termbeflow at each market edge. To do
this, letg,, ={¢: E, — R be the vector space of arbitrary real numbergassito the
market edges. We may define linear transformaflofr - E,, , 8(f)(e) = f(€, which
takes flows into this larger vector space. ltdasyeto see thaf is one-to-one, so we may
choose a left-inversef™ : E,, — F, suchthat9™.g(f) = f . Substituting into the
above,

7Tr(h)(i):7-4(h)°¢_1°‘9_1°‘9°¢0) (36)
Letting p, =77, ;, o@ 6", this simplifies to,
TG () ()= Pyhy (9" i )) (37)

Let v, O E,, be the unit vector which assigns 1 to ed@ad zero to all other edges. The
set {,}¢¢, Is abasis foE,, , so we may expresg,,, in this basis as some matrix,

T =t te, ] (38)

For some market-edge prices, {F:-» R 42 . Revenue can then be expressed as,
7 () =ty e, 00 00)C)] . = 2t (FoaD)E) = X t.(i)E)  (39)
ek €15,

Finally, the price of final product can be computed as the revenue for vegtarH ,
which is one for final product and zero for all other products,

Tl = D t(di)@) = X t(ah), (40)
elE, éldn K
which is the required formo

Proof of Lemma 3. First, we show that the set of total restricticfss} , uniquely

determines the upstream restriction at every compiotnat is not a market edge. The
upstream restrictions of the input nodes are utyggetermined (to be zero). We
proceed inductively to show that the upstreamigin at a component, is uniquely
determined. There are three cases to consider:

1. cis an assembly node. If the upstream restricta's incoming is uniquely
determined, the upstream restrictiorc & simply their sum, so it is uniquely
determined.

2. cis anon-market edge. If the upstream restrichitars parent node is uniquely
determined, the upstream restrictiorc & the parent’s upstream restriction
divided by the number of its outgoing edges, $® itniquely determined.



3. cis a market node. If the upstream restrictiomisjuely determined at the parent
nodes oft’s incoming edges, the upstream restriction ahanming edge,
elJinc(c) is found by adding a fraction of the upstreamrietsbn ate’s parent to
the restriction at. The upstream restriction @ts the sum of all these upstream
restrictions, which is the sum of these fractiaw@hponents (which are uniquely
determined) and the restrictions at each'®fncoming edges, which is simply
.. Thus,c's upstream restriction is uniquely determined.

Next we show that there is a unique upstream ogistni vector,w , compatible with total
market restriction§S} which results in flowf. By the first step, we know that is
uniquely determined at each node that is not a etaréde. In order fow to result in
flow f, we must havef (C) = N- W, = N—z s, which is true by assumption, and for

each market node, there must be a constastuch that i is an incoming edge oh,

f(e)=¢,— W. We must also havez W, =W, for w to be a value upstream
ellinc(m)

me)+Wn and i, = me)+Wn
linc(m)| linc(m)|
uniquely determine all thw} . Finally, for each market edge,we may comput&, as

the difference between the upstream restrictiasgbarent divided by the number of its
outgoing edges, and the upstream restrictian athus, we have uniquely determined the
restriction vectorX, with market total§§,} which yields flowf. o

restriction vector, s, = - f(e). Inthis way, we may



