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Abstract
We formalize a notion of a privacy wrapper, de-
fined as an algorithm that can take an arbitrary
and untrusted script and produce an output with
differential privacy guarantees. Our novel privacy
wrapper design leverages subsets of data and halts
to overcome the issue of unknowable sensitivity.

1. Introduction
Consider a scenario involving a holder of personal data and
a researcher. The researcher has written an analysis script
and would like to apply it to the data in order to gain insight.
The data holder is concerned with the privacy of individuals
in the data, and may not necessarily trust the researcher.
Furthermore, the data holder may have contractual obli-
gations that prevent them from sharing information about
individuals in the data. The researcher gives the data holder
their analysis script, but the data holder does not have the
resources or expertise to analyze the code for privacy threats.
Instead, the data holder desires a simple way to add privacy
guarantees to the researcher’s script, without looking inside
it, so that the output can be safely returned. This motivates
the central question of this study:

What privacy guarantees can be added to a sta-
tistical analysis script from an untrusted source,
treating it in a black box fashion?

Although many organizations are interested in increasing
researcher access to data, the costs given current technology
can be considerable. For example, the US Census Bureau
has a program to allow researchers to interact with raw
data. To maintain privacy, however, the Bureau maintains
a set of secure locations around the country and puts all
applicants through a background check. In another exam-
ple, Facebook and Social Science One teamed up to make
data about shared URLs available to researchers. However,
to work with the most sensitive data, researchers must be
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pre-approved by a university review board, pass an appli-
cation process, and undergo monitoring - even at the level
of individual keystrokes. The project is also exploring a
solution based on differential privacy, but this would involve
restricting researchers to a small set of commands, reducing
the flexibility of the system.

In contrast with existing approaches, the goal of this study
is to enable a researcher to work with private data in an au-
tomatic fashion, without the need for screening procedures
to establish trust. We will refer to a system that achieves
this as a privacy wrapper. Akin to a function wrapper in
programming, the idea is to write an algorithm that medi-
ates all interaction with the researcher’s script, producing
output that is based on the behavior of the script, while also
yielding strong privacy guarantees.

1.1. Considerations for Untrusted Code

A number of stylized observations will guide our design
of a privacy wrapper. First, one possible strategy involves
analyzing the code submitted by the researcher to under-
stand its privacy properties under any possible dataset, then
tailoring noise to match the results of this analysis. For
example, one might hope to detect if a researcher script
is already differentially private, in which case the output
can be returned to the researcher immediately. While this
may be possible for specific scripts, it is unfortunately not
possible in general. In the language of the theory of com-
putation, privacy properties such as differential privacy are
semantic and non-trivial. Rice’s theorem tells us that the
problem of deciding if arbitrary code meets such properties
is undecidable. Instead, we must follow a different strategy
for constructing a privacy wrapper, treating it as a black box.

Second, to privatize functions with real-valued outputs, re-
searchers usually proceed by analyzing the function’s sen-
sitivity. In particular, the local sensitivity of a researcher
script A at a dataset D is defined as the maximum amount
the output may change in response to a change in one row
of the data. Unfortunately, when treating a researcher script
as a black box, and assuming the set of possible data entries
is too large for an exhaustive search, there is no way to
estimate local sensitivity. This suggests that straightforward
sensitivity-based approaches are unlikely to work.

Finally, an adversary may design a script that changes its
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behavior when a secret condition is met. For example, sup-
pose that that an adversary is interested in a specific target,
t, which may or may not be in the data. The adversary
writes a script that outputs 0 unless t is in the data, in which
case the script outputs some large U >> 1. If t is not in
the data, there is no way for the wrapper to detect that the
researcher script is capable of outputting any value other
than 0, at least in all cases. Moreover, whatever the behavior
of wrapper is when t is not in the data, it cannot change
substantially when t is present in the data, or this would
give away the secret information. This suggests that if the
wrapper approximates the output of researcher script on the
true data in some cases, it must sometimes “pretend” that
certain individuals are not in the data.

These observations motivate the design of our privacy wrap-
per, which treats the researcher script as a black box and
uses subsets of data to ensure a type of sensitivity bound.
Our privacy wrapper has the following properties:

1. Privacy: Given any researcher script, the mechanism
generated by the wrapper meets differential privacy.

2. Accuracy: The output of the wrapper is related to the
researcher script in the sense that it is found by adding
(predetermined) noise to the output of the script on
some subset of data.

3. Flexibility: Our privacy wrapper places no limitation
on the code written by a researcher. Any script that
returns a real number can be used.

A disadvantage of our approach is that our wrapper requires
exponential time to run. We hope to address this limitation
in future research.

2. Related Works
Differential privacy was introduced by Dwork et al. as a
rigorous standard for mechanisms that compute real-valued
statistics from personal data (Dwork et al., 2006). The au-
thors pioneered privacy analysis based on global sensitivity,
which is defined as the maximal change in a statistic re-
sulting from a one row change to any dataset. A number
of studies have since developed differentially private mech-
anisms leveraging local sensitivity, which is often much
smaller than global sensitivity (Nissim et al., 2007; Johnson
et al., 2018; Vadhan, 2017). Such approaches cannot imme-
diately be applied to black box researcher scripts, as neither
local nor global sensitivity may be estimated.

Starting with Papernot et al., privacy researchers have fol-
lowed a strategy of partitioning a dataset into pieces, then
aggregating the results through noisy voting (Papernot et al.,
2016; Jordon et al., 2018). Such algorithms treat a researcher
script as a black box, and apply as long as the return value

is categorical, rather than real-valued. Unlike studies in this
lineage, we focus on real-valued statistics.

In a closely related study, Dwork and Lei develop tools for
privatizing robust statistics (Dwork & Lei, 2009). The statis-
tics they consider are white boxes, but they have unbounded
global sensitivity in some cases. The authors’ demonstrate
that such statistics can still be privatized if an algorithm is
allowed to halt when a certain sensitivity bound is breached.
In our work on black boxes, we also resort to halting as a
way to overcome the problem of unknowable sensitivity.

A different approach to expanding access to data involves
presenting researchers with a restricted language for writing
their scripts. An example is PINQ, which presents program-
mers with a SQL-like interface with privacy guarantees
(McSherry, 2009). Kiefer et al. propose an architecture
in which access to data is mediated by a privacy layer that
implements differentially private mechanisms (Kifer et al.,
2020).

3. Basic Definitions
Let D be the set of possible entries that represent one indi-
vidual in a dataset. A dataset is represented as a multiset of
finite size with entries in D. Let D? be the set of all possible
datasets. We say two datasets D1, D2 ∈ D? are neighbors
if one can be obtained from the other by switching exactly
one element.

We define an algorithm as a functionA : D? → ∆(R∪{⊥}).
Here, ⊥ is used to represent halt, meaning an algorithm
fails to return a real value. For convenience, we define a
researcher’s script as a deterministic functionR : D? → R∪
{⊥}. All results in this paper can be extended to researcher
scripts that are randomized by adding a sampling step to the
wrapper. LetR be the set of all deterministic algorithms.

Given any two distributions l1, l2 ∈ ∆(R ∪ {⊥}), we say
these distributions are (ε, δ)-indistinguishable if for every
measurable setE ⊆ R∪{⊥}, for any i, j ∈ {1, 2}, li(E) ≤
exp(ε)lj(E) + δ.

We will denote the (ε, δ)-indistinguishability of l1 and l2
as l1 ∼ε,δ l2. If l1, l2, and l3 are distributions, then the
following transitive property holds: If l1 ∼ε1,δ1 l2, and
l2 ∼ε2,δ2 l3, then l1 ∼ε1+ε2,δ1+δ2 l3. (Dwork & Roth,
2014)

An algorithm,A : D? → ∆(R∪{⊥}) is (ε, δ)-differentially
private if for any neighboring datasets D1 and D2, A(D1)
and A(D2) are (ε, δ)-indistinguishable.

A wrapper is a function, W : D? ×R → ∆(R ∪ {⊥}). We
will say that a wrapper W imposes (ε, δ)−differential pri-
vacy if for any researcher algorithm R, the wrapper W (·, R)
is (ε, δ)−differentially private. Throughout this manuscript,
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we will use the more compact WD to denote the probability
distribution W (D,R) when R is understood.

4. Algorithm Description
Our privacy wrapperW is based on the following definitions.
Let multiset S ∈ D? be called (α, λ, T,R)−stable if for
every X,Y ⊆ S of size at least T , we have R(X), R(Y ) ∈
R, and the two distributions L(R(X), λ) and L(R(Y ), λ)
are (α, 0)-indistinguishable. Because α, λ, T , and R will
not change in this study, we will omit them and simply refer
to the set S as stable. It is worth noting that under this
definition, if R yields ⊥ for any subset of S of size at least
T , then S is not stable. Further, we define L(µ, λ) be the
Laplace distribution with mean µ and scale parameter λ.

Our wrapper may not use every element in the dataset D ∈
D when computing a private version of A(D). Throughout
this paper, we will use N to represent the size of a dataset,
and M to represent the maximum number of entries that a
privacy wrapper may exclude. To help select a size between
N −M and N , we define the distribution G(ε, α,N,M) as
follows: G(ε, α,N,M)(n) equals

δ exp
(

min
{

(ε− 4α)(n−N +M)− 2α, ε(N − n)
})

for n such that N −M ≤ n ≤ N and 0 otherwise, where
δ is a constant selected so that the total probability sums to
1. We will normally omit the parameter arguments to G for
readability purposes.

Figure 1. The distribution G(n) when N = 100,M = 40, ε =
0.1, and α = 0.01. For these values, δ ≈ 0.01.

Our privacy wrapper W takes as input a researcher script
R : D? → ∆(R ∪ {⊥}) and a dataset D ∈ D? of size
N . Additionally, Algorithm W uses the following auxiliary
parameters: α, λ, ε ∈ R such that α ≥ 0, λ > 0, ε > 4α,
and M,T ∈ N such that T ≤ N − 2M .

Algorithm W :

1. Choose n from distribution G.

2. If the set of stable subsets of size n is non-
empty, then select an element S at random,
and output a draw from L(R(S), λ). Other-
wise, output ⊥.

5. Analysis of Algorithm
Theorem 1. Given ε > 4α, Algorithm W imposes (ε, δ)-
differential privacy, where δ is the normalization factor from
the distribution G.

To prove Theorem 1, we show that for any measurable set
E ⊆ R ∪ {⊥}, and any neighboring datasets D1 and D2,

WD1
(E)− δ

WD2(E)
≤ exp(ε)

If there are no stable subsets of size N −M of either D1 or
D2, then WD1

and WD2
are the same distribution (giving

probability 1 to ⊥), so the bound follows immediately. If
there are any stable subsets of size N −M of either D1 or
D2, choose one and call it K. Define reference distribution
H = L(R(K), λ). For any D ∈ D?, write WD(·|n) to
represents the conditional probability distribution of the
wrapper when n has been chosen in step 1.
Lemma 1. H is (2α, 0)−indistinguishable from WD1

(·|n)
and WD2

(·|n) for any n when these algorithms do not halt.

Proof. For i ∈ {1, 2}, if WDi(·|n) does not halt, then it is
a mixture of Laplace distributions of the form L(R(S), λ),
where S ⊆ Di is a stable subset of size n ≥ N −M . So it
is sufficient to show that every distribution in the mixture is
2α-indistinguishable from H .

Since |S| ≥ N −M , |S ∩ K| ≥ N − 2M ≥ T . Also,
because S ∩K is a subset of a stable subset of size at least
T , it is also stable. Because S is stable, and S∩K is a subset,
we have L(R(S), λ) ∼α,0 L(R(S ∩K), λ). Because K is
stable, and S ∩K is a subset, L(R(K), λ) ∼α,0 L(R(S ∩
K), λ) So then L(R(S), λ) ∼2α,0 L(R(K), λ).

We provide two propositions that describe the behavior of
the distribution G.
Proposition 1. For any r in the support of G,

G(r) ≤ (exp(ε− 4α)− 1)
∑
n<r

G(n) + exp(−2α)δ

Proof. Note the recurrence: for any N −M ≤ n ≤ N ,
G(n+ 1) ≤ exp(ε− 4α)G(n). Using this, we see that

exp(ε− 4α)

r−1∑
n=N−M

G(n) =

r−1∑
n=N−M

exp(ε− 4α)G(n)

≥
r−1∑

n=N−M
G(n+ 1) =

r∑
n=N−M+1

G(n)

Subtracting
∑r−1
N−M G(n) from both sides, we have,

(exp(ε− 4α)− 1)

r−1∑
n=N−M

G(n) = G(r)−G(N −M)

≥ G(r)− exp(−2α)δ
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Rearranging gives the desired result.

Proposition 2. For any r in the support of G,

G(r) ≤ (exp(ε)− 1)
∑
n>r

G(n) + δ

The proof of this proposition is similar to the previous one,
so we omit it.

Given dataD ∈ D? and researcher scriptR, letm(D,R) be
the size of the largest stable subset of D. Since any subset
of a stable subset is also stable, Algorithm 1 it will output ⊥
if it selects n > m(D,R), and it will output a real number
if it selects n ≤ m(D,R). The following lemma relates m
to the idea of neighboring datasets.

Lemma 2. When D1, D2 ∈ D? are neighbors, m(D1, R)
and m(D2, R) differ by at most 1.

Proof. Say that S1 is a maximal stable subset of D1. Then
S1∩D2 is a stable subset ofD2. Further, |S1∩D2| ≥ |S1|−
1 = m(D1, R)− 1. Therefore m(D2, R) ≥ m(D1, R)− 1.
By symmetric argument, m(D1, R) ≥ m(D2, R)− 1.

We can now complete the proof of Theorem 1. For any
D ∈ D?, write WD(·|n) to represents the conditional
probability distribution of the wrapper given the value
of n. Let E be any measurable set in R ∪ {⊥}. Let
r = max(m(D1),m(D2)). For i ∈ {1, 2} the law of total
probability implies

WDi(E) =
∑
n<r

WDi(E|n)G(n)

+WDi(E|r)G(r) +
∑
n>r

WDi(E|n)G(n)

We consider two cases:

Case ⊥ /∈ E: We bound the privacy ratio as follows:

WD1
(E)− δ

WD2(E)

≤

∑
n<r

exp(2α)H(E)G(n) + exp(2α)H(E)G(r)− δ∑
n<r

exp(−2α)H(E)G(n) + 0

≤ exp(4α)

∑
n<r

G(n) +G(r)− exp(−2α)δ∑
n<r

G(n)

Plugging in G(r) from Proposition 1 and simplifying
bounds the ratio by exp(ε).

Case ⊥ ∈ E: By Lemma 1, WDi(·|n) is 2α-
indistinguishable from H(·) when WDi doesn’t halt. When

n < r,WDi
doesn’t halt, and therefore exp(−2α)H(E\{⊥

}) ≤WDi(E|n) ≤ exp(2α)H(E \ {⊥}). Hence,

WD1
(E)− δ

WD2(E)

≤

∑
n<r

exp(2α)H(E \ {⊥})G(n) +G(r) +
∑
n>r

G(n)− δ∑
n<r

exp(−2α)H(E \ {⊥})G(n) + 0 +
∑
n>r

G(n)

Substituting for G(r) from Proposition 2 and rearranging,
the right-hand side is upper-bounded by

exp(4α)

∑
n<r

H(E \ {⊥})G(n) + exp(ε− 2α)
∑
n>r

G(n)∑
n<r

H(E \ {⊥})G(n) + exp(2α)
∑
n>r

G(n)

Since ε > 4α, the fraction is greater than 1, so we can
subtract the first terms from the numerator and denominator
and maintain the inequality:

WD1
(E)− δ

WD2
(E)

≤ exp(4α) exp(ε− 4α) = exp(ε)

6. Describing δ

The privacy parameter δ can be computed precisely, as δ−1

equals
N∑

n=N−M
exp

(
min

(
(ε−4α)(n−N+M)−2α, ε(N−n)

))
To understand the magnitude of δ, it is helpful to have a
closed form approximation. We can define one such approx-
imation as follows:

δ̂ =
ε(ε− 4α) exp(2α)

4α
[

exp
(
Q(M − 1)

)
− 1
]

where Q = ε(ε− 4α)(2ε− 4α)−1.
Proposition 3. For a privacy wrapper with parameters ε
and α, δ and δ̂ are within a multiplicative factor that ap-
proaches exp(2α) as M → ∞. Moreover δ̂ > δ, which
guarantees that the privacy wrapper imposes (ε, δ̂) differen-
tial privacy.

We omit the proof due to space constraints.
Corollary 1. For any fixed α and ε, δ is Θ(exp(−M)).

7. Discussion
We have formalized the notion of a privacy wrapper, and pre-
sented a novel algorithm for its implementation. Our work
demonstrates that differential privacy can achieved for real-
valued statistics even when local sensitivity is unknowable.
Future work will focus on the search for sub-exponential
wrapper algorithms. We are also interested in developing
metrics for comparing wrapper algorithms according to ac-
curacy and their likelihood of halting.
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